Please use this identifier to cite or link to this item: https://repositorio.mcti.gov.br/handle/mctic/6550
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBotelho, Luiz C.L.-
dc.date.accessioned2024-08-16T19:19:33Z-
dc.date.available2024-08-16T19:19:33Z-
dc.date.issued2008-
dc.identifier.urihttps://repositorio.mcti.gov.br/handle/mctic/6550-
dc.languageenpt_BR
dc.publisherCentro Brasileiro de Pesquisas Físicaspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleThe Atiyah-Singer Index Theorem: A Heat Kernel (PDE's) Proofpt_BR
dc.typeFolhetopt_BR
dc.publisher.countryBrasilpt_BR
dc.description.resumoWe present a simple Partial Differential Equation proof for the Atiyah-Singer Index Theorem in the context of Dirac Operators on a Riemman Surface. Addintionaly, we present a proof of the monotonic grown under the Ricci flux of the Dirac Operator in the presence of a abelian Gauge Connection in a Riemman Surface.pt_BR
Appears in Collections:Publicações CBPF

Files in This Item:
File Description SizeFormat 
2008_the_atiyah_singer_index_theorem.pdf144.86 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.