Please use this identifier to cite or link to this item:
metadata.rede.dc.title: Stochastic quantization for complex actions Menezes, Gabriel
Svaiter, Nami Fux
metadata.rede.dc.contributor.author1: Centro Brasileiro de Pesquisas Físicas (CBPF)
metadata.rede.dc.publisher: Centro Brasileiro de Pesquisas Físicas 2008
metadata.rede.dc.description.resumo: We use the stochastic quantization method to study systems with complex valued path integral weights. We assume a Langevin equation with a memory kernel and Einstein's relations with colored noise. The equilibrium solution of this non-Markovian Langevin equation is analyzed. We show that for a large class of elliptic non-Hermitian operators acting on scalar functions on Euclidean space, which define different models in quantum field theory, converges to an equilibrium state in the asymptotic limit of the Markov parameter. Moreover, as we expected, we obtain the Schwinger functions of the theory.
metadata.rede.dc.description: Conteúdo: Abstract -- 1. Introduction -- 2.Stochastic quantization for the free scalar field theory the Euclidean case -- 3. Stochastic quantization for complex actions -- 4. Conclusions and perspectives -- 5. Acknowlegements
metadata.rede.dc.subject: Matemática
Appears in Collections:Publicações CBPF

Files in This Item:
File Description SizeFormat 
2008_stochastic_quantization_of_scalar_fields_in_de_sitter_spacetime.pdf198.12 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.