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Abstract

Through the systematic use of the Minlos theorem on the support of cylindrical
measures on R∞, we produce several mathematically rigorous path integrals in inter-
acting euclidean quantum fields with Gaussian free measures defined by generalized
powers of the Laplacean operator.

1 Introduction

Since the result of R.P. Feynman on representing the initial value solution of Schrodinger
Equation by means of an analytically time continued integration on a infinite - dimen-
sional space of functions, the subject of Euclidean Functional Integrals representations
for Quantum Systems has became the mathematical - operational framework to ana-
lyze Quantum Phenomena and stochastic systems as showed in the previous decades of
research on Theoretical Physics ([1]–[3]).

One of the most important open problem in the mathematical theory of Euclidean
Functional Integrals is that related to implementation of sound mathematical approxima-
tions to these Infinite-Dimensional Integrals by means of Finite-Dimensional approxima-
tions outside of the always used [computer oriented] Space-Time Lattice approximations
(see [2], [3] - chap. 9). As a first step to tackle upon the above cited problem it will
be needed to characterize mathematically the Functional Domain where these Functional
Integrals are defined.

The purpose of this note is to present the formulation of Euclidean Quantum Field
theories as Functional Fourier Transforms by means of the Bochner-Martin-Kolmogorov
theorem for Topological Vector Spaces ([4], [5] - theorem 4.35) and suitable to define and
analyze rigorously Functional Integrals by means of the well-known Minlos theorem ([5] -
theorem 4.312 and [6] - part 2) and presented in full in Appendix 1.
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We thus present news results on the difficult problem of defining rigorously infinite-
dimensional quantum field path integrals in general space times Ω ⊂ Rν (ν = 2, 4, . . . )
by means of the analytical regularization scheme.

2 Some rigorous quantum field path integral in the

Analytical regularization scheme

Let us thus start our analysis by considering the Gaussian measure associated to the
(infrared regularized) α-power (α > 1) of the Laplacean acting on L2(R2) as an operational
quadratic form (the Stone spectral theorem or the analytical regularizing schem in QFT)

(−∆)α
ε =

∫
εIR≤λ

(λ)α dE(λ) (1-a)

Z(0)
α,εIR

[j] = exp

{
−1

2

〈
j, (−∆)−α

ε j
〉

L2(R2)

}
=

∫
d(0)

α,εµ [ϕ] exp

(
i
〈
j, ϕ
〉

L2(R2)

)
(1-b)

Here εIR > 0 denotes the infrared cut off.
It is worth call the reader attention that due to the infrared regularization introduced

on eq (1-a), the domain of the Gaussian measure ([4]–[6]) is given by the space of square
integrable functions on R2 by the Minlos theorem of Appendix 1, since for α > 1, the
operator (−∆)−α

εIR
defines a classe trace operator on L2(R2), namely

TrH
1
((−∆)−α

εIR
) =

∫
d2k

1

(|K|2α + εIR)
< ∞ (1-c)

This is the only point of our analysis where it is needed to consider the infra-red cut off
considered on the spectral resolution eq (1-a). As a consequence of the above remarks, one
can analize the ultra-violet renormalization program in the following interacting model
proposed by us and defined by an interaction gbareV (ϕ(x)), with V (x) denoting a function
on R such, that it posseses an essentially bounded (compact support) Fourier transform
and gbare denoting the positive bare coupling constant.

Let us show that by defining a renormalized coupling constant as (with gren < 1)

gbare =
gren

(1− α)1/2
(2)

one can show that the interaction function

exp

{
−gbare(α)

∫
d2x V (ϕ(x))

}
(3)

is an integrable function on L1(L2(R2), d
(0)
α,εIRµ [ϕ]) and leads to a well-defined ultra-violet

path integral in the limit of α → 1.
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The proof is based on the following estimates.
Since almost everywhere we have the pointwise limit

exp

{
−gbare(α)

∫
d2x V (ϕ(x))

}
lim

N→∞

{
N∑

n=0

(−1)n(gbare(α))n

n!

∫
R

dk1 · · · dkn Ṽ (k1) · · · Ṽ (kn)

×
∫

R2

dx1 · · · dxn eik1ϕ(x1) · · · eikn ϕ(xn)

}
(4)

we have that the upper-bound estimate below holds true∣∣∣Zα
εIR

[gbare]
∣∣∣ ≤ ∣∣∣ ∞∑

n=0

(−1)n(gbare(α))n

n!

∫
R2

dk1 · · · dkn Ṽ (k1) · · · Ṽ (kn)

∫
R2

dx1 · · · dxn

∫
d(0)

α,εIR
µ[ϕ](e

i
NP̀
=1

k`ϕ(x`)
)
∣∣∣ (5-a)

with

Zα
εIR

[gbare] =

∫
d(0)

α,εIR
µ[ϕ] exp

{
−gbare(α)

∫
d2x V (ϕ(x))

}
(5-b)

we have, thus, the more suitable form after realizing the d2ki and d
(0)
α,εIRµ[ϕ] integrals

respectivelly ∣∣∣Zα
εIR=0[gbare]

∣∣∣ ≤ ∞∑
n=0

(gbare(α))n

n!

(
||Ṽ ||L∞(R)

)n

∣∣∣ ∫ dx1 · · · dxn det−
1
2

[
G(N)

α (xi, xj)
]

1≤i≤N
1≤j≤N

∣∣∣ (6)

Here [G
(N)
α (xi, xj)]1≤i≤N

1≤j≤N
denotes the N × N symmetric matrix with the (i, j) entry

given by the Green-function of the α-Laplacean (without the infra-red cut off here! and
the needed normalization factors !).

Gα(xi, xj) = |xi − xj|2(1−α) Γ(1− α)

Γ(α)
(7)

At this point, we call the reader attention that we have the formulae on the asymptotic
behavior for α → 1.{

lim
α→1
α>1

det−
1
2 [G(N)

α (xi, xj)]

}
∼ (1− α)N/2 ×

(∣∣∣(N − 1)(−1)N

πN/2

∣∣∣)− 1
2

(8)

After substituting eq.(8) into eq.(6) and taking into account the hypothesis of the
compact support of the nonlinearity Ṽ (k), one obtains the finite bound for any value
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grem > 0, and producing a proof for the convergence of the perturbative expansion in
terms of the renormalized coupling constant.

lim
α→1

∣∣∣Zα
εIR=0[gbare(α)]

∣∣∣ ≤ ∞∑
n=0

(‖Ṽ ‖L∞(R))
n

n!

(
gren

(1− α)
1
2

)n

× (1n)√
n

(1− α)n/2

≤ e
√

πgren‖Ṽ ‖L∞(R) < ∞ (9)

Another important rigorously defined functional integral is to consider the following
α-power Klein Gordon operator on Euclidean space-time

L = (−∆)α + m2 (10)

with m2 a positive ”mass” parameters.
Let us note that L−1 is an operator of class trace on L2(Rν) if and only if the result

below holds true

TrL2(Rν)(L−1) =

∫
dνk

1

k2α + m2
= C̄(ν) m( ν

α
−2) ×

{ π

2α
cosec

νπ

2α

}
< ∞ (11)

namely if

α >
ν

2
(12)

In this case, let us consider the double functional integral with functional domain
L2(Rν)

Z[j, k] =

∫
d

(0)
G β[v(x)]

×
∫

d
(0)

(−∆)α+v+m2 µ[ϕ]

× exp

{
i

∫
dνx (j(x) ϕ(x) + k(x) v(x))

}
(13)

where the Gaussian functional integral on the fields V (x) has a Gaussian generating
functional defined by a

∮
1
-integral operator with a positive defined kernel g(|x − y|),

namely

Z(0)[k] =

∫
d

(0)
G β[v(x)] exp

{
i

∫
dνx k(x)v(x)

}
= exp

{
−1

2

∫
dνx

∫
dνy (k(x) g(|x− y|) k(x))

}
(14)

By a simple direct application of the Fubbini-Tonelli theorem on the exchange of the
integration order on eq.(13), lead us to the effective λϕ4 - like well-defined functional
integral representation

Zeff[j] =

∫
d

(0)

((−∆)α+m2)µ [ϕ(x)]

exp

{
−1

2

∫
dνxdνy |ϕ(x)|2 g(|x− y|) |ϕ(y)|2

}
× exp

{
i

∫
dνx j(x)ϕ(x)

}
(15)
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Note that if one introduces from the begining a bare mass parameters m2
bare de-

pending on the parameters α, but such that it always satisfies eq.(11) one should ob-
tains again eq.(15) as a well-defined measure on L2(Rν). Of course that the usual pure
Laplacean limit of α → 1 on eq.(10), will needed a renormalization of this mass parameters
(lim
α→1

m2
bare (α) = +∞!) as much as done in the previous example.

Let us continue our examples by showing again the usefulness of the precise determi-
nation of the functional - distributional structure of the domain of the functional integrals
in order to construct rigorously these path integrals without complicated limit procedures.

Let us consider a general Rν Gaussian measure defined by the Generating functional
on S(Rν) defined by the α-power of the Laplacean operator −∆ acting on S(Rν) with a
of small infrared regularization mass parameter µ2

Z(0)[j] = exp

{
−1

2

〈
j, ((−∆)α + µ2

0)
−1 j
〉

L2(Rν)

}
=

∫
Ealg(S(Rν))

d(0)
α µ[ϕ] exp(i ϕ(j)) (16)

An explicitly expression in momentum space for the Green function of the α-power of
(−∆)α + µ2

0 given by

((−∆)+α + µ2
0)
−1(x− y) =

∫
dνk

(2π)ν
eik(x−y)

(
1

k2α + µ2
0

)
(17)

Here C̄(ν) is a ν-dependent (finite for ν-values !) normalization factor.
Let us suppose that there is a range of α-power values that can be choosen in such

way that one satisfies the constraint below∫
Ealg(S(Rν))

d(0)
α µ[ϕ](‖ϕ‖L2j(Rν))

2j < ∞ (18)

with j = 1, 2, · · · , N and for a given fixed integer N , the highest power of our polinomial
field interaction. Or equivalently, after realizing the ϕ-Gaussian functional integration,
with a space-time cutt off volume Ω on the interaction to be analyzed on eq.(16)∫

Ω

dνx[(−∆)α + µ2
0]
−j(x, x) = vol(Ω)×

(∫
dνk

k2α + µ2
0

)j

= Cν(µ0)
( ν

α
−2) ×

( π

2α
cosec

νπ

2α

)
< ∞ (19)

For α > ν
2
, one can see by the Minlos theorem that the measure support of the

Gaussian measure eq.(16) will be given by the intersection Banach space of measurable
Lebesgue functions on Rν instead of the previous one Ealg(S(Rν)) ([4]–[6]).

L2N(Rν) =
N⋂

j=1

(L2j(Rν)) (20)
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In this case, one obtains that the finite - volume p(ϕ)2 interactions

exp

{
−

N∑
j=1

λ2j

∫
Ω

(ϕ2(x))j dx

}
≤ 1 (21)

is mathematically well-defined as the usual pointwise product of measurable functions and
for positive coupling constant values λ2j ≥ 0. As a consequence, we have a measurable

functional on L1(L2N(Rν); d
(0)
α µ[ϕ]) (since it is bounded by the function 1). So, it makes

sense to consider mathematically the well-defined path - integral on the full space Rν with
those values of the power α satisfying the contraint eq.(17).

Z[j] =

∫
L2N (Rν)

d(0)
α µ[ϕ] exp

{
−

N∑
j=1

λ2j

∫
Ω

ϕ2j(x)dx

}
× exp(i

∫
Rν

j(x)ϕ(x)) (22)

Finally, let us consider a interacting field theory in a compact space-time Ω ⊂ Rν

defined by an iteger even power 2n of the Laplacean operator with Dirichlet Boundary
conditions as the free Gaussian kinetic action, namely

Z(0)[j] = exp

{
−1

2

〈
j, (−∆)−2nj

〉
L2(Ω)

}
=

∫
W n

2 (Ω)

d
(0)
(2n) µ[ϕ] exp(i〈j, ϕ〉L2(Ω)) (23)

here ϕ ∈ W n
2 (Ω) - the Sobolev space of order n which is the functional domain of the

cylindrical Fourier Transform measure of the Generating functional Z(0)[j], a continuous
bilinear positive form on W−n

2 (Ω) (the topological dual of W n
2 (Ω)) ([4]–[6]).

By a straightforward application of the well-known Sobolev immersion theorem, we
have that for the case of

n− k >
ν

2
(24)

including k a real number the functional Sobolev space W n
2 (Ω) is contained in the contin-

uously fractional differentiable space of functions Ck(Ω). As a consequence, the domain
of the Bosonic functional integral can be further reduced to Ck(Ω) in the situation of
eq.(24)

Z(0)[j] =

∫
Ck(Ω)

d
(0)
(2n) µ[ϕ] exp(i〈j, ϕ〉L2(Ω)) (25)

That is our new result generalizing the Wiener theorem on Brownian paths in the case
of n = 1 , k = 1

2
and ν = 1

Since the bosonic functional domain on eq.(25) is formed by real functions and not
distributions, we can see straightforwardly that any interaction of the form

exp

{
−g

∫
Ω

F (ϕ(x))dνx

}
(26)

with the non-linearity F (x) denoting a lower bounded real function (γ > 0)

F (x) ≥ −γ (27)
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is well-defined and is integrable function on the functional space (Ck(Ω), d
(0)
(2n) µ[ϕ]) by a

direct application of the Lebesque theorem∣∣∣ exp

{
−g

∫
Ω

F (ϕ(x)) dνx

} ∣∣∣ ≤ exp{+gγ} (28)

At this point we make a subtle mathematical remark that the infinite volume limit
of eq.(25) - eq.(26) is very difficult, since one looses the Garding - Poincaré inequalite
at this limit for those elliptic operators and, thus, the very important Sobolev theorem.
The probable correct procedure to consider the thermodynamic limit in our Bosonic path
integrals is to consider solely a volume cut off on the interaction term Gaussian action as
in eq.(22) and there search for vol(Ω) →∞ ([7]–[10]).

As a last remark related to eq.(23) one can see that a kind of “fishnet” exponential
generating functional

Z(0)[j] = exp

{
−1

2

〈
j, exp{−α∆}j

〉
L2(Ω)

}
(29)

has a Fourier transformed functional integral representation defined on the space of the
infinitelly differentiable functions C∞(Ω), which physically means that all field configu-
rations making the domain of such path integral has a strong behavior like purely nice
smooth classical field configurations.

As a last important point of this note, we present an important result on the geomet-
rical characterization of massive free field on an Euclidean Space-Time ([10]).

Firstly we announcing a slightly improved version of the usual Minlos Theorem ([4]).

Theorem 3. Let E be a nuclear space of tests functions and dµ a given σ-measure on
its topologic dual with the strong topology. Let 〈 , 〉0 be an inner product in E, inducing

a Hilbertian structure on H0 = (E, 〈 , 〉0), after its topological completation.
We suppose the following:
a) There is a continuous positive definite functional in H0, Z(j), with an associated

cylindrical measure dµ.
b) There is a Hilbert-Schmidt operator T : H0 → H0 ; invertible, such that E ⊂

Range (T ), T−1(E) is dense in H0 and T−1 : H0 → H0 is continuous.
We have thus, that the support of the measure satisfies the relationship

support dµ ⊆ (T−1)∗(H0) ⊂ E∗ (30)

At this point we give a non-trivial application of ours of the above cited Theorem 3.
Let us consider an differential inversible operator L : S ′(RN) → S(R), together with

an positive inversible self-adjoint elliptic operator P : D(P ) ⊂ L2(RN) → L2(RN). Let
Hα be the following Hilbert space

Hα =
{

S(RN), 〈Pαϕ, Pαϕ〉L2(RN ) = 〈 , 〉α , for α a real number
}

. (31)

We can see that for α > 0, the operators below

P−α : L2(RN) → H+α

ϕ → (P−αϕ)
(32)
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Pα : H+α → L2(RN)

ϕ → (Pαϕ)
(33)

are isometries among the following sub-spaces

D(P−α), 〈 , 〉L2) and H+α

since
〈P−αϕ, P−αϕ〉H+α

= 〈PαP−αϕ, PαP−αϕ〉L2(RN ) = 〈ϕ, ϕ〉L2(RN ) (34)

and
〈Pαf, Pαf〉L2(RN ) = 〈f, f〉H+α

(35)

If one considers T a given Hilbert-Schmidt operator on Hα , the composite operator
T0 = PαTP−α is an operator with domain being D(P−α) and its image being the Range
(Pα). T0 is clearly an invertible operator and S(RN) ⊂ Range (T ) means that the
equation (TP−α)(ϕ) = f has always a non-zero solution in D(P−α) for any given f ∈
S(RN). Note that the condition that T−1(f) be a dense subset on Range (P−α) means
that

〈T−1f, P−αϕ〉L2(RN ) = 0 (36)

has as unique solution the trivial solution f ≡ 0.
Let us suppose too that T−1 : S(RN) → Hα be a continuous application and the

bilinear term (L−1(j))(j) be a continuous application in the Hilbert spaces H+α ⊃ S(RN),

namely: if jn
L2

−→ j, then L−1 : P−αjn
L2

−→ L−1P−αj, for {jn}n∈Z and jn ∈ S(RN).
By a direct application of the Minlos Theorem, we have the result

Z(j) = exp

{
−1

2
[L−1(j)(j)]

}
=

∫
(T−1)∗Hα

dµ(T ) exp(iT (j)) (37)

Here the topological space support is given by

(T−1)∗Hα =

[(
P−αT0P

α
)−1
]∗ (

(Pα(S(RN)))
)

=
[
(Pα)∗(T−1

0 )∗(P−α))∗
]
Pα(S(RN))

= PαT−1
0 (L2(RN)) (38)

In the important case of L = (−∆ + m2) : S ′(RN) → S(RN) and T0T
∗
0 = (−∆ +

m2)−2β ∈
∮

1
(L2(RN)) since Tr(T0T

∗
0 ) =

1

2(m2)β

(
m2

1

)N
2 Γ(N

2
)Γ(2β − N

2
)

Γ(β)
< ∞ for β >

N

4
with the choice P = (−∆ + m2), we can see that the support of the measure in the

path-integral representation of the Euclidean measure field in RN may be taken as the
measurable sub-set below

supp {d (−∆ + m2) u(ϕ)} = (−∆ + m2)−α · (−∆ + m2)+β(L2(RN)) (39)

since L−1P−α = (−∆ + m2)−1−α is always a bounded operator in L2(RN) for α > −1.
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As a consequence each field configuration can be considered as a kind of “fractional
distributional” derivative of a square integrable function as written below

ϕ(x) =
[(
−∆ + m2

)N
4

+ε−1
f
]
(x) (40)

with a function f(x) ∈ L2(RN) and any given ε > 0, even if originally all fields configura-
tions entering into the path-integral were elements of the Schwartz Tempered Distribution
Spaces S ′(RN) certainly very “rough” mathematical objects to characterize from a rigor-
ous geometrical point of view.

We have, thus, make a further reduction of the functional domain of the free massive
Euclidean scalar field of S ′(RN) to the measurable sub-set as given by eq.(130) denoted
by W (RN)

exp

{
−1

2

[
(−∆ + m2)−1j

]
(j)

}
=

∫
S′(RN )

d(−∆+m2)µ(ϕ) ei ϕ(j)

=

∫
W (RN )⊂S′(RN )

d(−∆+m2)µ̃(f) ei〈f,(−∆+m2)
N
4 +ε−1f〉

L2(RN )

(41)
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APPENDIX

Some Comments on the Support of Functional
Measures in Hilbert Space

Let us comment further on the application of the Minlos Theorem in Hilbert Spaces. In
this case one has a very simple proof which holds true in general Banach Spaces (E, || ||).

Let us thus, give a cylindrical measures d∞µ(x) in the algebraic dual Ealg of a given
Banach Space E ([4]–[6]).

Let us suppose either that the function ||x|| belongs to L1(Ealg, d∞µ(x)). Then the
support of this cylindrical measures will be the Banach Space E.

The proof is the following:
Let A be a sub-set of the vectorial space Ealg (with the topology of pontual conver-

gence), such that A ⊂ Ec (so ||x| = +∞). Let be the sets Aµ = {x ∈ Ealg | ||x|| ≥ n}.
Then we have the set inclusion A ⊂

⋂∞
n=0 An, so its measure satisfies the estimates below:

µ(A) ≤ lim inf
n

µ(An)

= lim inf
n

µ{x ∈ Ealg | ||x|| ≥ n}

≤ lim inf
n

{
1

n

∫
Ealg

||x||d∞µ(x)

}
= lim inf

n

||x||L1(Ealg,d∞µ )

n
= 0. (1)

Leading us to the Minlos theorem that the support of the cylindrical measure in Ealg

is reduced to the own Banach Space E.
Note that by the Minkowisky inequality for general integrals, we have that ||x||2 ∈

L1(Ealg, d∞µ(x)). Now it is elementary evaluation to see that if A−1 ∈
∮

1
(M), when

E = M, a given Hilbert Space, we have that∫
Malg

d∞A µ(x) · ||x||2 = TrM(A−1) < ∞. (2)

This result produces another criterium for supp d∞A µ = M (the Minlos Theorem), when
E = M is a Hilbert Space.

It is easy too to see that if ∫
M
||x||d∞µ(x) < ∞ (3)

then the Fourier-Transformed functional

Z(j) =

∫
M

ei(j,x)Md∞µ(x) (4)

is continuous in the norm topology of M.
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Otherwise, if Z(j) is not continuous in the origin 0 ∈ M (without loss of generality),
then there is a sequence {jn} ∈ M and δ > 0, such that ||jn|| → 0 with

δ ≤ |Z(jn)− 1| ≤
∫
M
|ei(jn,x)M − 1|d∞µ(x)

≤
∫
M
|(jn, x)|d∞µ(x)

≤ ||jn||
(∫

M
||x||d∞µ(x)

)
→ 0, (5)

a contradiction with δ > 0.
Finally, let us consider an elliptic operator B (with inverse) from the Sobelev space

M−2m(Ω) to M2m(Ω). Then by the criterium given by eq.(2) if

TrL2(Ω)[(I + ∆)+m
2 B−1(I + ∆)+m

2 ] < ∞, (6)

we will have that the path integral below written is well-defined for x ∈ M+2m(Ω) and
j ∈M−2m(Ω). Namely

exp(−1

2
(j, B−1j)L2(Ω)) =

∫
M+2m(Ω)

dBµ(x) exp(i(j, x)L2(Ω)). (7)

By the Sobolev theorem which means that the embeeded below is continuous (with
Ω ⊆ Rν denoting a smooth domain), one can further reduce the measure support to the
Hölder α continuous function in Ω if 2m − ν

2
> α. Namely, we have a easy proof of the

famous Wiener Theorem on sample continuity of certain path integrals in Sobolev Spaces

M2m(Ω) ⊂ Cα(Ω) (8-a)

The above Wiener Theorem is fundamental in order to construct non-trivial examples
of mathematically rigorous euclideans path integrals in spaces Rν of higher dimensionality,
since it is a trivial consequence of the Lebesgue theorem that positive continuous functions
V (x) generate functionals integrable in {M2m(Ω), dBµ(ϕ)} of the form below

exp

{
−
∫

Ω

V (ϕ(x))dx

}
∈ L1(M2m(Ω), dBµ(ϕ)). (8-b)

As a last important remark on Cylindrical Measures in Separable Hilbert Spaces,
let us point at to our reader that the support of such above measures is always a σ-
compact set in the norm topology of M. In order to see such result let us consider a
given dense set of M, namely {xk}k∈I+ . Let {δk}k∈I+ be a given sequence of positive
real numbers with δk → 0. Let {εn} another sequence of positive real numbers such that∑∞

n=1 εn < ε. Now it is straightforward to see that M ⊂
⋃∞

h=1 B(xk, δk) ⊂ M and thus

lim sup µ{
⋃n

k=1 B(xk, δk)} = µ(M) = 1. As a consequence, for each n, there is a kn, such

that µ
(⋃kn

k=1 B(xk, δk)
)
≥ 1− ε.

Now the sets Kµ =
⋂∞

n=1

[⋃kn

k=1 B(xk, δk)
]

are closed and totally bounded, so they are

compact sets in M with µ(M) ≥ 1 − ε. Let is now choose ε = 1
n

and the associated
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compact sets {Kn,µ}. Let us further consider the compact sets K̂n,µ =
⋃n

`=1 K`,µ. We

have that K̂n,µ ⊆ K̂n+1,µ, for any n and lim sup µ(K̂n,µ) = 1. So, Supp dµ =
⋃∞

n=1 K̂n,µ, a
σ-compact set of M.

We consider now a enumerable family of cylindrical measures {dµn} in M satisfying
the chain inclusion relationship for any n ∈ I+

Supp dµn ⊆ Supp dµn+1.

Now it is straightforward to see that the compact sets {K̂(n)
n }, where Supp dµm =

⋃∞
n=1 K̂

(m)
n ,

is such that Supp{dµm} ⊆
⋃∞

n=1 K̂
(n)
n , for any m ∈ I+.

Let us consider the family of functionals induced by the restriction of this sequence of
measures in any compact K̂

(n)
n . Namely

µn → L(n)
n (f) =

∫
K̂

(n)
n

f(x) · dµp(x). (8-c)

Here f ∈ Cb(K̂
(n)
n ). Note that all the above functionals in

⋃∞
n=1 Cb(K̂

(n)
n ) are bounded by

1. By the Alaoglu-Bourbaki theorem they form a compact set in the weak star topology

of
(⋃∞

n=1 Cb(K̂
(n)
n )
)∗

, so there is a sub-sequence (or better the whole sequence) converging

to a unique cylindrical measure µ̄(x). Namely

lim
n→∞

∫
M

f(x)dµn(x) =

∫
M

f(x)dµ̄(x) (8-d)

for any f ∈
⋃∞

n=1 Cb(K̂
(n)
n ).


