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Abstract
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1 Introduction

The superalgebra of the Supersymmetric Quantum Mechanics (1D N -Extended Super-
symmetry Algebra) [1] is a Z2-graded algebra expressed by N odd generators Qi (i =
1, . . . , N) and a single even generator H (the hamiltonian). It is defined by the (anti)-
commutation relations

{Qi, Qj} = 2δijH,

[Qi, H ] = 0. (1)

The structure of its minimal linear representations realized on a finite number of fields
depending on a single real parameter (t, the time) has been substantially elucidated in
recent years. Several results have been obtained [2, 3, 4, 5, 6, 7]. They are based on the
Atiyah-Bott-Shapiro [8] classification of the irreducible Clifford algebras. In this paper we
discuss the recent developments addressing the classification of the (1) representations.
In the Conclusions we briefly mention at least one open problem.

The problem we addressing can be stated as follows: to construct and classify, for
any given integer N , the linear representations of (1) acting on a finite, minimal, num-
ber of fields, even and odd (bosonic and fermionic), depending on t. The generator H
has to be represented by a time-derivative, while the Qi’s generators must be realized
by finite-dimensional matrices whose entries are either c-numbers or time-derivatives up
to a certain power. The representation space we are considering is infinite-dimensional,
being given by the set of fundamental fields and their time-derivatives of any order. In
the physical literature these representations are called “finite” since they are obtained

∗Talk given at ICCA8, Campinas, Brazil, May 2008.



CBPF-NF-024/08 2

by a finite number of fundamental fields (the situation parallels here the representation
theory of chiral algebras [9], given by the generating set of primary fields and their de-
scendants; the time-derivatives of the fundamental fields play, for (1) representations, the
role of the descendants in chiral algebra representations). For the same reason, the no-
tion of “minimal representations” is expressed, in the physical literature, as “irreducible
representations”.

The program of classifying the (1) minimal representations starts with [2], with the
recognition that formulating an eigenvalue problem for the hamiltonian H (for an eigen-
value different from zero) reduces the Qi’s anticommutators to, up to normalization, the
basic relation for Euclidean Clifford algebra generators. The [2] main result can be stated
as follows. The minimal representations of (1), for a given N , are obtained by applying
a dressing transformation to a fundamental representation (nowadays called in the liter-
ature the “root multiplet”), with equal number of bosonic and fermionic fields. The root
multiplet is specified by an associated Euclidean Clifford algebra. As a main corollary,
the total number n of bosonic fundamental fields entering a minimal representation equals
the total number of fermionic fundamental fields and is expressed, for any given N , by
the following relation [2]

N = 8l +m,

n = 24lG(m), (2)

where l = 0, 1, 2, . . . and m = 1, 2, 3, 4, 5, 6, 7, 8.
G(m) appearing in (2) is the Radon-Hurwitz function

m 1 2 3 4 5 6 7 8
G(m) 1 2 4 4 8 8 8 8

(3)

Note the mod 8 Bott’s periodicity.
An integral Z-grading, compatible with the Z2-grading of the superalgebra, can be

assigned to the fundamental fields and their time-derivatives. In the physical literature,
the grading is referred as “mass-dimension”. The integral grading will be denoted by z.
For convenience, the mass-dimension d will be expressed as d = z

2
. The hamiltonian H

has mass-dimension d = 1 (its fermionic roots, the Qi’s operators, have mass-dimension
d = 1

2
). Bosonic (fermionic) fields have integer (respectively, half-integer) mass-dimension.

Each linear representation admitting a finite number of fundamental fields is characterized
by its “fields content”, i.e. the set of integers (n1, n2, . . . , nl) specifying the number ni of
fundamental fields of dimension di (di = d1 + i−1

2
, with d1 an arbitrary constant) entering

the representation. Physically, the nl fields of highest dimension are the auxiliary fields
which transform as a time-derivative under any supersymmetry generator. The maximal
value l (corresponding to the maximal dimensionality dl) is defined to be the length of the
representation (a root representation has length l = 2). Either n1, n3, . . . correspond to
the bosonic fields (therefore n2, n4, . . . specify the fermionic fields) or viceversa. In both
cases the equality n1 + n3 + . . . = n2 + n4 + . . . = n is guaranteed.

The representation theory does not discriminate the overall bosonic or fermionic nature
of the representation.
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According to [2], if (n1, n2, . . . , nl) specifies the fields content of an irreducible repre-
sentation, (nl, nl−1, . . . , n1) specifies the fields content of a dual irreducible representation.
Representations such that n1 = nl, n2 = nl−1, . . . are called “self-dual representations”.
In [3] it was shown how to extract from the associated Clifford algebras the admissible
fields content of the (1) linear finite irreducible representations. We discuss these results
in the next Section.

2 Supersymmetric Quantum Mechanics and Clifford

algebras

In this Section we give a more detailed account of the connection between representations
of the Supersymmetric Quantum Mechanics and Clifford algebras.

According to [2] the length-2 minimal representations of the (1) supersymmetry alge-
bra are uniquely determined by a representation of an associated Clifford algebra. The
connection goes as follows. The supersymmetry generators acting on a length-2 irreducible
multiplet can be expressed as

Qi =
1√
2

(
0 σi

σ̃i ·H 0

)
(4)

where σi and σ̃i are matrices entering a Weyl type (i.e. block antidiagonal) irreducible
representation of the Clifford algebra relation

Γi =

(
0 σi

σ̃i 0

)
, {Γi,Γj} = 2ηij (5)

The Qi’s in (4) are supermatrices with vanishing bosonic and non-vanishing fermionic
blocks, acting on a multiplet m (thought of as a column vector) which can be either
bosonic or fermionic (we conventionally consider a length-2 irreducible multiplet as bosonic
if its upper half part of component fields is bosonic and its lower half is fermionic; it is
fermionic in the converse case). The connection between Clifford algebra irreps of the
Weyl type and minimal representations with minimal length of the N -extended one-
dimensional supersymmetry is such that D, the dimensionality of the (Euclidean, in the
present case) space-time of the Clifford algebra (5) coincides with the number N of the
extended supersymmetries, according to

� of space-time dim. (Weyl-Clifford) ⇔ � of extended su.sies (in 1-dim.)
D = N

(6)

The matrix size of the associated Clifford algebra (equal to 2n, with n given in (2))
corresponds to the number of (bosonic plus fermionic) fields entering the one-dimensional
N -extended supersymmetry irrep.

The classification of Weyl-type Clifford irreps, furnished in [2], can be easily recovered
from the well-known classification of Clifford irreps, given in [8] (see also [10] and [11]).
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The (4) Qi’s matrices realizing the N -extended supersymmetry algebra (1) on length-2
minimal representations have entries which are either c-numbers or are proportional to
the Hamiltonian H . Minimal representations of higher length (l ≥ 3) are systematically
produced [2] through repeated applications of the dressing transformations

Qi �→ Q̂
(k)
i = S(k)QiS

(k)−1
(7)

realized by diagonal matrices S(k)’s (k = 1, . . . , 2n) with entries s(k)
ij given by

s(k)
ij = δij(1 − δjk + δjkH) (8)

Some remarks are in order [2]
i) the dressed supersymmetry operatorsQi

′ (for a given set of dressing transformations)
have entries which are integral powers of H . A subclass of the Qi

′ s dressed operators
is given by the local dressed operators, whose entries are non-negative integral powers
of H (their entries have no 1

H
poles). A local representation (minimal representations

fall into this class) of an extended supersymmetry is realized by local dressed operators.
The number of the extension, given by N ′ (N ′ ≤ N), corresponds to the number of local
dressed operators.

ii) The local dressed representation is not necessarily a minimal representation. Since
the total number of fields (n bosons and n fermions) is unchanged under dressing, the local
dressed representation is a minimal representation iff n and N ′ satisfy the (2) requirement
(with N ′ in place of N).

iii) The dressing changes the dimension of the fields of the original multiplet m. Under
the S(k) dressing transformation (7),m �→ S(k)m, all fields entering m are unchanged apart
from the k-th one (denoted, e.g., as ϕk and mapped to ϕ̇k). Its dimension is changed from
[k] �→ [k] + 1. This is why the dressing changes the length of a minimal representation.
As an example, if the original length-2 multiplet m is a bosonic multiplet with d 0 mass-
dimension bosonic fields and d 1

2
mass-dimension fermionic fields (in the following such

a multiplet will be denoted as (xi;ψj) ≡ (d, d)s=0, for i, j = 1, . . . , d), then S(k)m, for
k ≤ d, corresponds to a length-3 multiplet with d− 1 bosonic fields of 0 mass-dimension,
d fermionic fields of 1

2
mass-dimension and a single bosonic field of mass-dimension 1 (in

the following we employ the notation (d− 1, d, 1)s=0 for such a multiplet of fields).
When looking purely at the representation properties of a given multiplet the assign-

ment of an overall mass-dimension s is arbitrary, since the supersymmetry transformations
of the fields are not affected by s. Introducing an overall mass-dimension is useful for ten-
soring multiplets and becomes essential for physical applications, e.g. in the construction
of supersymmetric invariant terms entering an action.

In the above multiplet l denotes its length, dl the number of auxiliary fields of highest
mass-dimension transforming as time-derivatives. The total number of odd-indexed equal
the total number of even-indexed fields, i.e. d1+d3+ . . . = d2+d4+ . . . = d. The multiplet
is bosonic if the odd-indexed fields are bosonic and the even-indexed fields are fermionic
(the multiplet is fermionic in the converse case). For a bosonic multiplet the auxiliary
fields are bosonic (fermionic) if the length l is an odd (even) number.

Just like the overall mass-dimension assignment, the assignment of a bosonic (fermionic)
character to a multiplet is arbitrary since the mutual transformation properties of the
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fields inside a multiplet are not affected by its statistics. Therefore, multiplets always
appear in dually related pairs so that to any bosonic multiplet there exists its fermionic
counterpart with the same transformation properties.

Throughout this paper we assign integer valued mass-dimension to bosonic multiplets
and half-integer valued mass-dimension to fermionic multiplets.

As pointed out before, the most general (d1, d2, . . . , dl) multiplet is recovered as a
dressing of its corresponding N -extended length-2 (d, d) multiplet. In [2] it was shown
that all dressed supersymmetry operators producing any length-3 multiplet (of the form
(d − p, d, p) for p = 1, . . . , d − 1) are of local type. Therefore, for length-3 multiplets,
we have N ′ = N . This implies, in particular, that the (d − p, d, p) multiplets are non-
equivalent irreps of the N -extended one-dimensional supersymmetry. As concerns length
l ≥ 4 multiplets, the general problem of finding minimal representations was not addressed
in [2]. It was shown, as a specific example, that the dressing of the length-2 (4, 4) irrep of
N = 4, realized through the series of mappings (4, 4) �→ (1, 4, 3) �→ (1, 3, 3, 1), produces at
the end a length-4 multiplet (1, 3, 3, 1) carrying only three local supersymmetries (N ′ = 3).
Since the relation (2) is satisfied when setting the number of extended supersymmetries
acting on a multiplet equal to 3 and the total number of bosonic (fermionic) fields entering
a minimal representation equal to 4, as a consequence, the (1, 3, 3, 1) multiplet corresponds
to a minimal representation of the N = 3 extended supersymmetry.

Based on an algorithmic construction of representatives of Clifford irreps, an itera-
tive method to compute the admissible field contents of the minimal representations for
arbitrary N values of the extended supersymmetry was presented in [3].

3 Admissible field contents

It is now possible to plug the information contained in Clifford algebras and apply the
construction outlined in the previous Section to compute the admissible field content for
the length-4 representations for arbitrary values of N . This construction was done in [3].
We present here the list of length-4 field content up to N ≤ 11.

Up to N = 8 we have

N = 1 NO
N = 2 NO
N = 3 (1, 3, 3, 1)
N = 4 NO
N = 5 (1, 5, 7, 3), (3, 7, 5, 1), (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 6 (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 7 (1, 7, 7, 1)
N = 8 NO

(9)

Since there are no length-l irreps with l ≥ 5 for N ≤ 9, the above list, together with
the already known length-2 and length-3 irreps, provides the complete classification of
the admissible field content of the minimal representations for N ≤ 8.
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Please note that the length-4 irrep of N = 3, (1, 3, 3, 1), is self-dual under the [3]
mass-dimension duality exchange discussed in the Introduction, while two of the non-
equivalent length-4 N = 5 irreps are self-dual, (2, 6, 6, 2) and (1, 7, 7, 1). The remaining
ones are pair-wise dually related ((1, 5, 7, 3) ⇔ (3, 7, 5, 1) and (1, 6, 7, 2) ⇔ (2, 7, 6, 1)).

The N = 9 length-4 minimal representation (d1, d2, d3, d4) is for simplicity expressed
in terms of the two positive integers h ≡ d1, k = d4, since d3 = 16 − h, d2 = 16 − k. The
complete list of N = 9 length-4 fields content is expressed by h, k satisfying the constraint

h+ k ≤ 8. (10)

N = 10 is the lowest supersymmetry admitting length-5 minimal representations. The
field content of its length-4 minimal representations is given by (d1, d2, d3, d4), expressed
in terms of the two positive integers h ≡ d1, k = d4, since d3 = 32− h, d2 = 32− k. If we
set

r = min(h, k) (11)

the non-equivalent length-4 field content is given by the ordered pair of positive integers
h, k satisfying the constraint

h+ k + r ≤ 24. (12)

For N = 11 the length-4 fields content (d1, d2, d3, d4) is expressed in terms of the two
positive integers h ≡ d1, k = d4, since d3 = 64 − h, d2 = 64 − k. Setting as before
r = min(h, k) and introducing the s(r) function defined through

s(r) =

{
8 − r for r = 1, . . . , 7

0 otherwise

}
(13)

we can express the constraints on h, k as

h+ k + r − s(r) ≤ 48. (14)

4 Supersymmetry graphs and their connectivity

In this Section we describe, largely based on [12], the graphical interpretation of the min-
imal supersymmetry representations and discuss, based on [6] and [7], their connectivity
properties.

An association can be made between N -colored oriented graphs and the linear super-
symmetry transformations. The identification goes as follows. The fundamental fields
(bosonic and fermionic) entering a representation are expressed as vertices. They can be
accommodated into an X − Y plane. The Y coordinate can be chosen to correspond to
the mass-dimension d of the fields. Conventionally, the lowest dimensional fields can be
associated to vertices lying on the X axis. The higher dimensional fields have positive,
integer or half-integer values of Y . A colored edge links two vertices which are connected
by a supersymmetry transformation. Each one of the N Qi supersymmetry generators
is associated to a given color. The edges are oriented. The orientation reflects the sign
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(positive or negative) of the corresponding supersymmetry transformation connecting the
two vertices. Instead of using arrows, alternatively, solid or dashed lines can be associated,
respectively, to positive or negative signs. No colored line is drawn for supersymmetry
transformations connecting a field with the time-derivative of a lower dimensional field.
This is in particular true for the auxiliary fields (the fields of highest dimension in the
representation) which are necessarily mapped, under supersymmetry transformations, in
the time-derivative of lower-dimensional fields.

Each irreducible supersymmetry transformation can be presented (the identification
is not unique) through an oriented N -colored graph with 2n vertices (see (2)). The graph
is such that precisely N edges, one for each color, are linked to any given vertex which
represents either a 0-mass dimension or a 1

2
-mass dimension field.

Despite the fact that the presentation of the graph is not unique, certain of its features
only depend on the class of the supersymmetry transformations. We introduce now,
following [6], the invariant characterization. An unoriented “color-blind” graph can be
associated to the initial graph by disregarding the orientation of the edges and their
colors (all edges are painted in black). For simplicity, we discuss here the invariant
characterization of the graphs associated to the length l = 3 irreducible representation that
will be discussed in the following (the generalization of the invariant characterization to
graphs of arbitrary length is straightforward, see [6]). They admit fields content (k, n, n−
k). The corresponding fields are denotes as xp (for 0-mass dimension), ψq (for 1

2
mass-

dimension) and gr (the 1 mass-dimension auxiliary fields), where p =, 1, . . . , k, q = 1, . . . , n
and r = 1, . . . , n− k.

The connectivity of the associated length l = 3 color-blind graph can be expressed
through the connectivity symbol ψg, expressed as

ψg = (m1)s1 + (m2)s2 + . . .+ (mZ)sZ
. (15)

The ψg symbol encodes the information on the partition of the n 1
2
-mass dimension fields

(vertices) into the sets of mz vertices (z = 1, . . . , Z) with sz edges connecting them to the
n− k 1-mass dimension auxiliary fields. We have

m1 +m2 + . . .+mZ = n, (16)

while sz �= sz′ for z �= z′.
The connectivity symbol is an invariant characterization of the class of the irreducible

supersymmetry transformations.
The connectivity symbol ψg can be used to induce a map ψ̃g from the set of graphs

Gr into the set of integers Z (ψ̃g : Gr → Z) s.t. W ∈ Z is given by

W =
Z∏

z=1

(pmz
2z−1)(p

sz
2z), (17)

where the pw’s, w = 1, 2, 3, . . ., denote the ordered set of prime integers (2, 3, 5, . . .). With
the above definition two inequivalent connectivities induce two distinct integers W,W ′

(W ′ �= W ).
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5 N = 4 decompositions and connectivities of the N =

5 minimal representations

The N = 5 minimal representations contain a total number of 8 bosonic and 8 fermionic
fields. The N = 5 minimal representations can be decomposed into two sets of N = 4
minimal representations whose vertices (component fields) are linked together by the 5th

supersymmetry. The N = 4 representations contain 4 bosonic and 4 fermionic fields
associated to different mass-dimensions.

The length-2 and length-4 N = 5 minimal representations admit a unique decomposi-
tion into N = 4 representations. The situation is different for the length-3 N = 5 minimal
representations whose fields content is given by (n, 8, 8 − n), for n = 1, 2, . . . , 7. They
admit the following decompositions in terms of (k, 4, 4−k) and (n−k, 4, 4−n+k) N = 4
representations:

(n, 8, 8 − n) = (k, 4, 4 − k) + (n− k, 4, 4 − n + k). (18)

It is convenient to express n as

n = 4 + εm, (19)

where ε = ±1, while m = 0, 1, 2, 3.
The inequivalent values of k are given by the integers

k =
1

2
(1 + ε)m,

1

2
(1 + ε)m+ 1, . . . ,

1

2
(1 + ε)m+ [

4 −m

2
], (20)

where the square brackets refers to the integral part.
The ψg connectivity symbol can be easily computed for each such decomposition. We

obtain, in terms of n and k,

ψg = (4 − k)5+k−n + (k)4+k−n + (4 + k − n)5−k + (n− k)4−k. (21)

For any given n, the ψg connectivity symbol differs for inequivalent values of k. This
implies, as a corollary, that the decomposition into N = 4 representations specified by
different, inequivalent values of k produces inequivalent N = 5 minimal representations
(no matter which supersymmetry generator is picked up as the “fifth”).

We define as “∆” the number of degeneracies, i.e. the number of inequivalent minimal
representations with the same fields content. ∆ is computed to be

∆ = [
4 −m

2
] + 1, (22)

The results for the inequivalent N = 5 length-3 minimal representations can be sum-
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marized in the following table

fields cont. N = 4 decomp. ψg connectivities labels
(1, 8, 7) (0, 4, 4) + (1, 4, 3) 35 + 54

(2, 8, 6) (0, 4, 4) + (2, 4, 2) 25 + 24 + 43 A
(1, 4, 3) + (1, 4, 3) 64 + 23 B

(3, 8, 5) (0, 4, 4) + (3, 8, 5) 15 + 34 + 42 A
(1, 4, 3) + (2, 4, 2) 24 + 53 + 12 B

(4, 8, 4) (0, 4, 4) + (4, 4, 0) 44 + 41 A
(1, 4, 3) + (3, 4, 1) 14 + 33 + 32 + 11 B
(2, 4, 2) + (2, 4, 2) 43 + 42 C

(5, 8, 3) (1, 4, 3) + (4, 4, 0) 43 + 31 + 10 A
(2, 4, 2) + (3, 4, 1) 13 + 52 + 21 B

(6, 8, 2) (2, 4, 2) + (4, 4, 0) 42 + 21 + 20 A
(3, 4, 1) + (3, 4, 1) 22 + 61 B

(7, 8, 1) (3, 4, 1) + (4, 4, 0) 51 + 30

(23)

The last column specifies the labels assigned, in terms of increasing values of k, to each
inequivalent N = 5 minimal representations.

For the sake of clarity we show two unoriented graphs (the figures 1 and 2) associated
to the two inequivalent N = 5 minimal representations (A and respectively B) with same
fields content (2, 8, 6). Similar graphical presentations can be straightforwardly drawn for
all other inequivalent N = 5 minimal representations.

6 Fusion algebra

The tensor product of linear minimal representations can be decomposed into their irre-
ducible constituents. This decomposition contains useful information in the construction
of bilinear (in general, multilinear) terms entering a supersymmetric invariant action. We
recall that the auxiliary fields in a given representation transform as a total derivative (a
time derivative in one dimension). Useful information concerning the decomposition of
the tensor products of the minimal representations can be encoded in the so-called fusion
algebra of the irreps and their supersymmetric vacua. The notion of a fusion algebra of
the supersymmetric vacua of the N -extended one dimensional supersymmetry, introduced
in [3], is constructed by analogy with the fusion algebra for rational conformal field theo-
ries. Fusion algebras can also be nicely presented in terms of their associated graphs. We
explicitly present here the N = 1 and N = 2 fusion graphs (with two subcases for each
N , according to whether or not the irreps are distinguished w.r.t. their bosonic/fermionic
statistics). Let us discuss here how to present the [3] results in graphical form. The
minimal representations correspond to points. Nk

ij oriented lines (with arrows) connect

the [j] and the [k] minimal representations if the decomposition [i] × [j] = Nij
k[k] holds.

The arrows are dropped from the lines if the [j] and [k] minimal representations can be
interchanged. The [i] minimal representation should correspond to a generator of the
fusion algebra. This means that the whole set of Nl = Nlj

k fusion matrices is produced
as the sum of powers of the Ni = Nij

k fusion matrix.
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Figure 1: Graph of the N = 5 (4, 8, 4) multiplet of 44 + 41 connectivity (type A).

Figure 2: Graph of the N = 5 (4, 8, 4) multiplet of 43 + 42 connectivity (type B).

Let us discuss explicitly the N = 2 case. We obtain the following list of four minimal
representations (if we discriminate their statistics):

[1] ≡ (2, 2)Bos; [2] ≡ (1, 2, 1)Bos; [3] ≡ (2, 2)Fer; [4] ≡ (1, 2, 1)Fer (24)

The corresponding N = 2 fusion algebra is realized in terms of four 4 × 4, mutually
commuting, matrices given by

N1 =

⎛⎜⎜⎜⎝
1 2 1 0
0 2 0 2
1 0 1 2
0 2 0 2

⎞⎟⎟⎟⎠ ≡ X; (25)

N2 = N4 =

⎛⎜⎜⎜⎝
0 2 0 2
0 2 0 2
0 2 0 2
0 2 0 2

⎞⎟⎟⎟⎠ ≡ Y ; (26)

N3 =

⎛⎜⎜⎜⎝
1 0 1 2
0 2 0 2
1 2 1 0
0 2 0 2

⎞⎟⎟⎟⎠ ≡ Z. (27)

The fusion algebra admits three distinct elements, X, Y, Z and one generator (we can
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choose either X or Z), due to the relations

Y =
1

8
(X3 − 2X) , Z = −1

4
(X3 − 6X2 + 4X). (28)

The vector space spanned by X, Y, Z is closed under multiplication

X2 = Z2 = ZX = X + 2Y + Z,

XY = Y 2 = Y Z = 4Y. (29)

This fusion algebra corresponds to the “smiling face” graph below. We obtain the follow-
ing four tables for the fusion graphs of the N = 1 and N = 2 supersymmetric quantum
mechanics minimal representations. The “A” cases below correspond to ignore the statis-
tics (bosonic/fermionic) of the given minimal representations. In the “B” cases, the
number of fundamental minimal representations is doubled w.r.t. the previous ones, in
order to take the statistics of the minimal representations into account. We have

Figure 3: Fusion graph of the N=1 superalgebra (A case, no bosons/fermions distinction).

Figure 4: Fusion graph of the N=1 superalgebra (B case, bosons/fermions distinction).
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Figure 5: Fusion graph of the N=2 superalgebra (A case, no bosons/fermions distinction).

Figure 6: Fusion graph of the N=2 superalgebra (B case, bosons/fermions distinction),
“the smiling face”. From left to right the four points correspond to the [2]− [1]− [3]− [4]
irreps, respectively. The lines are generated by the N1 ≡ X fusion matrix, see ([13]).
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7 Conclusions

In this paper we have reviewed the present state of the art concerning the classification
of the minimal representations of the (1) 1D N -Extended Superalgebra of the Supersym-
metric Quantum Mechanics. Since we have already discussed it elsewhere [14] we did
not mention here the vast range of physical implications of the Supersymmetric Quan-
tum Mechanics (like the possibility which offers to investigate in a simplified context the
properties of higher-dimensional supersymmetric theory of grandunification, supergravity
and M-theory). We focused instead on the mathematical aspects of the representation
theory and its relation with the Clifford algebras. We detailed the classification of [3]
of the admissible fields content of the minimal representations and the classifications
given in [6] and [7] of the admissible connectivities of the graphs associated to the min-
imal representations. It is quite appropriate to emphasize at a Conference devoted to
Clifford algebras that these results were obtained by applying Clifford algebras to the
representation problem of the Supersymmetric Quantum Mechanics. Other results, like
the construction of the fusion algebra associated to the tensoring of the representations,
were also presented. From a mathematical point of view some questions still have to be
answered. They need to be attacked by using more powerful methods than the ones here
discussed, relying on combinatorics. An issue which deserves being mentioned concerns
the possibility, for a sufficiently large value of N , that a dressing of the root multiplet of
minimal length produced by an admissible non-diagonal dressing matrix, could end up in
a minimal representation which cannot be expressed in graphical form with the type of
graphs introduced in Section 4.
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