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We discuss the minimal representations of the 1D N -Extended Supersymmetry

algebra (the Z2-graded symmetry algebra of the Supersymmetric Quantum Mechan-

ics) linearly realized on a finite number of fields depending on a real parameter t,

the time. Their knowledge allows to construct one-dimensional sigma-models with

extended off-shell supersymmetries without using superfields.

PACS numbers: 15A66, 17A70.

I. INTRODUCTION

The superalgebra of the Supersymmetric Quantum Mechanics (1D N -Extended Su-

persymmetry Algebra) [1] is a Z2-graded algebra expressed by N odd generators Qi

(i = 1, . . . , N) and a single even generator H (the hamiltonian). It is defined by the (anti)-

commutation relations

{Qi, Qj} = 2δijH,

[Qi, H] = 0. (1)

The structure of its minimal linear representations realized on a finite number of fields

depending on a single real parameter (t, the time) has been substantially elucidated in

recent years. Several results have been obtained [2–7]. They are based on the Atiyah-Bott-

Shapiro [8] classification of the irreducible Clifford algebras. In this paper we discuss several

results on the classification of the (1) minimal representations and their use in constructing

one-dimensional sigma-models with extended number of off-shell supersymmetries.

∗ “Talk given at the Conference “Group 27”, Yerevan, Armenia, August 2008.”
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The problem we addressing can be stated as follows: to construct and classify, for any

given integer N , the linear representations of (1) acting on a finite, minimal, number of

fields, even and odd (bosonic and fermionic), depending on t. The generator H has to

be represented by a time-derivative, while the Qi’s generators must be realized by finite-

dimensional matrices whose entries are either c-numbers or time-derivatives up to a certain

power. The representation space we are considering is infinite-dimensional, being given

by the set of fundamental fields and their time-derivatives of any order. In the physical

literature these representations are called “finite” since they are obtained by a finite number

of fundamental fields (the situation parallels here the representation theory of chiral algebras

[9], given by the generating set of primary fields and their descendants; the time-derivatives

of the fundamental fields play, for (1) representations, the role of the descendants in chiral

algebra representations). For the same reason, the notion of “minimal representations” is

expressed, in the physical literature, as “irreducible representations”.

The program of classifying the (1) minimal representations starts with [2], with the

recognition that formulating an eigenvalue problem for the hamiltonian H (for an eigenvalue

different from zero) reduces the Qi’s anticommutators to, up to normalization, the basic

relation for Euclidean Clifford algebra generators. The [2] main result can be stated as

follows. The minimal representations of (1), for a given N , are obtained by applying a

dressing transformation to a fundamental representation (nowadays called in the literature

the “root multiplet”), with equal number of bosonic and fermionic fields. The root multiplet

is specified by an associated Euclidean Clifford algebra. As a main corollary, the total

number n of bosonic fundamental fields entering a minimal representation equals the total

number of fermionic fundamental fields and is expressed, for any given N , by the following

relation [2]

N = 8l +m,

n = 24lG(m), (2)

where l = 0, 1, 2, . . . and m = 1, 2, 3, 4, 5, 6, 7, 8.

G(m) appearing in (2) is the Radon-Hurwitz function

m 1 2 3 4 5 6 7 8

G(m) 1 2 4 4 8 8 8 8

(3)
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Note the mod 8 Bott’s periodicity.

An integral Z-grading, compatible with the Z2-grading of the superalgebra, can be as-

signed to the fundamental fields and their time-derivatives. In the physical literature, the

grading is referred as “mass-dimension”. The integral grading will be denoted by z. For

convenience, the mass-dimension d will be expressed as d = z
2
. The hamiltonian H has

mass-dimension d = 1 (its fermionic roots, the Qi’s operators, have mass-dimension d = 1
2
).

Bosonic (fermionic) fields have integer (respectively, half-integer) mass-dimension. Each lin-

ear representation admitting a finite number of fundamental fields is characterized by its

“fields content”, i.e. the set of integers (n1, n2, . . . , nl) specifying the number ni of funda-

mental fields of dimension di (di = d1 + i−1
2

, with d1 an arbitrary constant) entering the

representation. Physically, the nl fields of highest dimension are the auxiliary fields which

transform as a time-derivative under any supersymmetry generator. The maximal value l

(corresponding to the maximal dimensionality dl) is defined to be the length of the rep-

resentation (a root representation has length l = 2). Either n1, n3, . . . correspond to the

bosonic fields (therefore n2, n4, . . . specify the fermionic fields) or viceversa. In both cases

the equality n1 + n3 + . . . = n2 + n4 + . . . = n is guaranteed.

The representation theory does not discriminate the overall bosonic or fermionic nature

of the representation.

According to [2], if (n1, n2, . . . , nl) specifies the fields content of an irreducible repre-

sentation, (nl, nl−1, . . . , n1) specifies the fields content of a dual irreducible representation.

Representations such that n1 = nl, n2 = nl−1, . . . are called “self-dual representations”. In

[3] it was shown how to extract from the associated Clifford algebras the admissible fields

content of the (1) linear finite irreducible representations. We discuss these results in the

next Section.

II. SUPERSYMMETRIC QUANTUM MECHANICS AND CLIFFORD

ALGEBRAS

In this Section we give a more detailed account of the connection between representations

of the Supersymmetric Quantum Mechanics and Clifford algebras.

According to [2] the length-2 minimal representations of the (1) supersymmetry algebra

are uniquely determined by a representation of an associated Clifford algebra. The con-
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nection goes as follows. The supersymmetry generators acting on a length-2 irreducible

multiplet can be expressed as

Qi =
1√
2

 0 σi

σ̃i ·H 0

 (4)

where σi and σ̃i are matrices entering a Weyl type (i.e. block antidiagonal) irreducible

representation of the Clifford algebra relation

Γi =

 0 σi

σ̃i 0

 , {Γi,Γj} = 2ηij (5)

The Qi’s in (4) are supermatrices with vanishing bosonic and non-vanishing fermionic blocks,

acting on a multiplet m (thought of as a column vector) which can be either bosonic or

fermionic (we conventionally consider a length-2 irreducible multiplet as bosonic if its upper

half part of component fields is bosonic and its lower half is fermionic; it is fermionic in the

converse case). The connection between Clifford algebra irreps of the Weyl type and minimal

representations with minimal length of the N -extended one-dimensional supersymmetry is

such that D, the dimensionality of the (Euclidean, in the present case) space-time of the

Clifford algebra (5) coincides with the numberN of the extended supersymmetries, according

to

] of space-time dim. (Weyl-Clifford) ⇔ ] of extended su.sies (in 1-dim.)

D = N

(6)

The matrix size of the associated Clifford algebra (equal to 2n, with n given in (2)) cor-

responds to the number of (bosonic plus fermionic) fields entering the one-dimensional N -

extended supersymmetry irrep.

The classification of Weyl-type Clifford irreps, furnished in [2], can be easily recovered

from the well-known classification of Clifford irreps, given in [8] (see also [10] and [11]).

The (4) Qi’s matrices realizing the N -extended supersymmetry algebra (1) on length-

2 minimal representations have entries which are either c-numbers or are proportional to

the Hamiltonian H. Minimal representations of higher length (l ≥ 3) are systematically

produced [2] through repeated applications of the dressing transformations

Qi 7→ Q̂
(k)
i = S(k)QiS

(k)−1
(7)
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realized by diagonal matrices S(k)’s (k = 1, . . . , 2n) with entries s(k)
ij given by

s(k)
ij = δij(1− δjk + δjkH) (8)

Some remarks are in order [2]

i) the dressed supersymmetry operators Qi
′ (for a given set of dressing transformations)

have entries which are integral powers of H. A subclass of the Qi
′ s dressed operators is

given by the local dressed operators, whose entries are non-negative integral powers of H

(their entries have no 1
H

poles). A local representation (minimal representations fall into this

class) of an extended supersymmetry is realized by local dressed operators. The number of

the extension, given by N ′ (N ′ ≤ N), corresponds to the number of local dressed operators.

ii) The local dressed representation is not necessarily a minimal representation. Since

the total number of fields (n bosons and n fermions) is unchanged under dressing, the local

dressed representation is a minimal representation iff n and N ′ satisfy the (2) requirement

(with N ′ in place of N).

iii) The dressing changes the dimension of the fields of the original multiplet m. Under

the S(k) dressing transformation (7), m 7→ S(k)m, all fields entering m are unchanged apart

from the k-th one (denoted, e.g., as ϕk and mapped to ϕ̇k). Its dimension is changed from

[k] 7→ [k]+1. This is why the dressing changes the length of a minimal representation. As an

example, if the original length-2 multiplet m is a bosonic multiplet with d 0 mass-dimension

bosonic fields and d 1
2

mass-dimension fermionic fields (in the following such a multiplet will

be denoted as (xi;ψj) ≡ (d, d)s=0, for i, j = 1, . . . , d), then S(k)m, for k ≤ d, corresponds to

a length-3 multiplet with d − 1 bosonic fields of 0 mass-dimension, d fermionic fields of 1
2

mass-dimension and a single bosonic field of mass-dimension 1 (in the following we employ

the notation (d− 1, d, 1)s=0 for such a multiplet of fields).

When looking purely at the representation properties of a given multiplet the assignment

of an overall mass-dimension s is arbitrary, since the supersymmetry transformations of

the fields are not affected by s. Introducing an overall mass-dimension is useful for tensor-

ing multiplets and becomes essential for physical applications, e.g. in the construction of

supersymmetric invariant terms entering an action.

In the above multiplet l denotes its length, dl the number of auxiliary fields of highest

mass-dimension transforming as time-derivatives. The total number of odd-indexed equal

the total number of even-indexed fields, i.e. d1 +d3 + . . . = d2 +d4 + . . . = d. The multiplet is
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bosonic if the odd-indexed fields are bosonic and the even-indexed fields are fermionic (the

multiplet is fermionic in the converse case). For a bosonic multiplet the auxiliary fields are

bosonic (fermionic) if the length l is an odd (even) number.

Just like the overall mass-dimension assignment, the assignment of a bosonic (fermionic)

character to a multiplet is arbitrary since the mutual transformation properties of the fields

inside a multiplet are not affected by its statistics. Therefore, multiplets always appear in

dually related pairs so that to any bosonic multiplet there exists its fermionic counterpart

with the same transformation properties.

Throughout this paper we assign integer valued mass-dimension to bosonic multiplets

and half-integer valued mass-dimension to fermionic multiplets.

As pointed out before, the most general (d1, d2, . . . , dl) multiplet is recovered as a dressing

of its corresponding N -extended length-2 (d, d) multiplet. In [2] it was shown that all dressed

supersymmetry operators producing any length-3 multiplet (of the form (d − p, d, p) for

p = 1, . . . , d−1) are of local type. Therefore, for length-3 multiplets, we have N ′ = N . This

implies, in particular, that the (d − p, d, p) multiplets are non-equivalent irreps of the N -

extended one-dimensional supersymmetry. As concerns length l ≥ 4 multiplets, the general

problem of finding minimal representations was not addressed in [2]. It was shown, as a

specific example, that the dressing of the length-2 (4, 4) irrep of N = 4, realized through the

series of mappings (4, 4) 7→ (1, 4, 3) 7→ (1, 3, 3, 1), produces at the end a length-4 multiplet

(1, 3, 3, 1) carrying only three local supersymmetries (N ′ = 3). Since the relation (2) is

satisfied when setting the number of extended supersymmetries acting on a multiplet equal

to 3 and the total number of bosonic (fermionic) fields entering a minimal representation

equal to 4, as a consequence, the (1, 3, 3, 1) multiplet corresponds to a minimal representation

of the N = 3 extended supersymmetry.

Based on an algorithmic construction of representatives of Clifford irreps, an iterative

method to compute the admissible field contents of the minimal representations for arbitrary

N values of the extended supersymmetry was presented in [3].

III. SUPERSYMMETRY GRAPHS AND THEIR CONNECTIVITY

In this Section we describe, largely based on [12], the graphical interpretation of the

minimal supersymmetry representations and discuss, based on [6] and [7], their connectivity
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properties.

An association can be made between N -colored oriented graphs and the linear supersym-

metry transformations. The identification goes as follows. The fundamental fields (bosonic

and fermionic) entering a representation are expressed as vertices. They can be accom-

modated into an X − Y plane. The Y coordinate can be chosen to correspond to the

mass-dimension d of the fields. Conventionally, the lowest dimensional fields can be associ-

ated to vertices lying on the X axis. The higher dimensional fields have positive, integer or

half-integer values of Y . A colored edge links two vertices which are connected by a super-

symmetry transformation. Each one of the N Qi supersymmetry generators is associated to

a given color. The edges are oriented. The orientation reflects the sign (positive or negative)

of the corresponding supersymmetry transformation connecting the two vertices. Instead of

using arrows, alternatively, solid or dashed lines can be associated, respectively, to positive

or negative signs. No colored line is drawn for supersymmetry transformations connecting a

field with the time-derivative of a lower dimensional field. This is in particular true for the

auxiliary fields (the fields of highest dimension in the representation) which are necessarily

mapped, under supersymmetry transformations, in the time-derivative of lower-dimensional

fields.

Each irreducible supersymmetry transformation can be presented (the identification is

not unique) through an oriented N -colored graph with 2n vertices (see (2)). The graph

is such that precisely N edges, one for each color, are linked to any given vertex which

represents either a 0-mass dimension or a 1
2
-mass dimension field.

Despite the fact that the presentation of the graph is not unique, certain of its features

only depend on the class of the supersymmetry transformations. We introduce now, following

[6], the invariant characterization. An unoriented “color-blind” graph can be associated to

the initial graph by disregarding the orientation of the edges and their colors (all edges

are painted in black). For simplicity, we discuss here the invariant characterization of the

graphs associated to the length l = 3 irreducible representation that will be discussed in the

following (the generalization of the invariant characterization to graphs of arbitrary length

is straightforward, see [6]). They admit fields content (k, n, n − k). The corresponding

fields are denotes as xp (for 0-mass dimension), ψq (for 1
2

mass-dimension) and gr (the 1

mass-dimension auxiliary fields), where p =, 1, . . . , k, q = 1, . . . , n and r = 1, . . . , n− k.

The connectivity of the associated length l = 3 color-blind graph can be expressed through
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the connectivity symbol ψg, expressed as

ψg = (m1)s1 + (m2)s2 + . . .+ (mZ)sZ
. (9)

The ψg symbol encodes the information on the partition of the n 1
2
-mass dimension fields

(vertices) into the sets of mz vertices (z = 1, . . . , Z) with sz edges connecting them to the

n− k 1-mass dimension auxiliary fields. We have

m1 +m2 + . . .+mZ = n, (10)

while sz 6= sz′ for z 6= z′.

The connectivity symbol is an invariant characterization of the class of the irreducible

supersymmetry transformations.

The connectivity symbol ψg can be used to induce a map ψ̃g from the set of graphs Gr

into the set of integers Z (ψ̃g : Gr → Z) s.t. W ∈ Z is given by

W =
Z∏

z=1

(pmz
2z−1)(p

sz
2z), (11)

where the pw’s, w = 1, 2, 3, . . ., denote the ordered set of prime integers (2, 3, 5, . . .). With the

above definition two inequivalent connectivities induce two distinct integers W,W ′ (W ′ 6=

W ).

IV. 1D σ-MODELS WITH OFF-SHELL SUPERSYMMETRIES

The results discussed so far concerning the construction and classification of the minimal

representations of the (1) supersymmetry algebra, allow us to introduce a different and

more comprehensive approach than the one based on superfields for the construction of one-

dimensional sigma-models with N extended supersymmetries. Following [13] we discuss it

in connection with σ-models with N = 5, 6, 7, 8 off-shell supersymmetries. In these cases the

minimal representations involve a total number of 8 bosonic and 8 fermionic fields. According

to [2] and [3] the length-3 representations are labeled by (k, 8, 8 − k), with k = 1, 2, . . . , 7.

According to [6] and [7], forN = 5, 6 and k = 2, 3, 4, 5, 6, supersymmetry transformations are

found with inequivalent connectivity. Using an N = 8 superfield approach, a partial list of

results was produced in [14] for N = 8 1D sigma-models. The alternative construction of [13]

allows to solve some unanswered questions, e.g., whether inequivalent connectivities induce
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different off-shell actions. The scheme of [13] heavily relies on a computational package for

Maple 11 which allows to deal with anticommuting fields.

We illustrate here the basic strategy. At first we have to construct the most general

homogeneous term Td of mass-dimension d, constructed in terms of the bosonic 0-dimensional

fields xi, the 1
2
-dimensional fermionic fields ψj, the 1-dimensional auxiliary fields gl and their

time-derivatives (a time-derivative counts as 1 in mass-dimension). No matter which is the

value of k, the following number of independent functions is encountered at each level d.

T0 : 1 function,

T 1
2

: 8 functions,

T1 : 36 function,

T 3
2

: 128 functions,

T2 : 402 functions,

T 5
2

: 1152 functions. (12)

We recall that, for d = 2, we have the correct mass-dimension for a sigma-model kinetic

term.

A manifestlyN -extended supersymmetric lagrangian LN is produced through the position

LN = Q1 · · ·QNFN , (13)

with, in mass-dimension,

[LN ] = 2,

[FN ] = 2− N

2
. (14)

One can define the action S =
∫
dtLN provided that LN is not a total derivative. The

action S is N -extended supersymmetric if, moreover, N − N constraints are satisfied, for

j = N + 1, · · · , N , such that

QjLN = ∂tRj,N , (15)

where, in mass-dimension, we have

[Rj,N ] =
3

2
. (16)
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Imposing a supersymmetry constraint for each extra supersymmetry operator produces a

system of 1152 constraining equations to be solved in terms of 128 functions (the coefficients

entering Rj,N). Needless to say, the great majority of these 1152 constraints are trivially sat-

isfied, while many other constraints are redundant (the same constraint is repeated over and

over). It should be noticed that, according to our notion of manifest supersymmetry, N = 4

off-shell supersymmetries can always assumed to be manifest. On the other hand, starting

from N ≥ 5, there exists extra supersymmetries which have to be imposed constraining the

functions entering FN (the total numbers are 1, 8, 36, 128, 402 for N = 0, 1, 2, 3, 4, respec-

tively). In [13] we discussed in detail the most general off-shell action for N = 5, 6, 7, 8

and k = 2 (namely the (2, 8, 6) multiplets, with their associated inequivalent connectivities).

The detailed discussion of the results will be given in that reference. It should be mentioned

that the scheme here proposed is a generalization of the one used in [3], where the most

general N = 8 off-shell action for the (1, 8, 7) multiplet was obtained (the problem there was

somehow simplified, instead of producing a systematic analysis of the constraining equa-

tions, one could rely on the special symmetry properties induced by the octonionic structure

constants). It is worth noticing that the systematic approach here outlined could in principle

lead us to attack the problem of constructing off-shell actions beyond the N = 8 barrier.

In particular we have in mind a special case of the (9, 16, 7) multiplet with N = 9 off-shell

supersymmetries. It is known to correspond (see [7]) to a (D = 1) dimensional reduction of

the N = 4 Super-Yang-Mills theory.
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