TERCEIRO INVENTÁRIO BRASILEIRO DE EMISSÕES E REMOÇÕES ANTRÓPICAS DE GASES DE EFEITO ESTUFA

RELATÓRIOS DE REFERÊNCIA

SETOR ENERGIA

EMISSÕES DE GASES DE EFEITO ESTUFA NO TRANSPORTE RODOVIÁRIO

TERCEIRO INVENTÁRIO BRASILEIRO DE EMISSÕES E REMOÇÕES ANTRÓPICAS DE GASES DE EFEITO ESTUFA

RELATÓRIOS DE REFERÊNCIA

SETOR ENERGIA

EMISSÕES DE GASES DE EFEITO ESTUFA NO TRANSPORTE RODOVIÁRIO

Elaborado por:

Centro de Estudos Integrados sobre Meio Ambiente e Mudanças Climáticas - Centro Clima/COPPE/UFRJ

Coordenação:

Emilio Lèbre La Rovere (Coordenação Geral)

Carolina Burle Schmidt Dubeux (Coordenação Técnica)

Autores:

Luan Santos William Wills (Supervisão de modelagem) Luiza Di Beo Oliveira (Estagiária) Bruna Cordeiro (Estagiária)

Apoio:

Carmen Brandão Reis (Secretária) Elza M. S. Ramos (*Design*)

Índice

		Página
Si	Siglas	9
A	Apresentação	11
Sı	Sumário Executivo	12
1	I Introdução	14
2	2 Metodologia	15
	2.1 Consumo de combustível	15
	2.2 Sistematização dos procedimentos para estimar o consumo de combus	
	2.3 Fatores de Emissão	18
3	Consumo de Combustíveis	20
	3.1 Frota de veículos	20
	3.1.1 Categorização da frota de veículos	20
	3.1.2 Procedimentos adotados para estimar a frota de veículos	21
	3.1.2.1 Curvas de sucateamento	21
	3.1.2.2 Licenciamentos de veículos novos	23
	3.2 Intensidade de Uso	23
	3.2.1 Valores de referência para a intensidade de uso dos veículos	23
	3.2.1.1 Automóveis, veículos comerciais leves do ciclo Otto e motocicleta	ıs 23
	3.2.1.2 Veículos do ciclo Diesel	25
	3.3 Quilometragem por litro de combustível (km/L)	27
	3.3.1 Automóveis e veículos comerciais leves do ciclo Otto	27
	3.3.2 Motocicletas	29
	3.3.3 Veículos do ciclo Diesel	30
	3.4 Consumo de combustível por categoria de veículos	31
	3.4.1 Distribuição do consumo de combustível por tipo de veículo	31
	3.4.2 Distribuição do consumo do veículo por tipo de combustível	33
	3.4.3 Consumo de GNV	35
4	Fatores de Emissão	37
	4.1 Fatores de emissão para CO ₂	39
	4.2 Automóveis e Veículos Comerciais Leves do Ciclo Otto	39

	4.2	2.1 Fatores de emissão para veículos novos	39
	4.2	2.2 Deterioração das emissões com o desgaste do veículo	47
	4.3	Veículos convertidos para o uso de GNV	48
	4.4	Motocicletas	48
	4.5	Ciclo Diesel	51
	4.5	i.1 Fatores de emissão para Diesel	51
	4.5	5.2 Fatores de emissão para biodiesel	55
5	Re	sultados	56
	5.1	Emissões detalhadas	56
6	An	álises e Recomendações	64
	6.1	Diferenças em relação ao inventário anterior	64
	6.2	Recomendações para melhorias	67
7	Re	ferências Bibliográficas	70
8	An	exos	72
	8.1	LEAP – Long-range Energy Alternative System	72
	8.2	Evolução da frota estimada por tipo de Ciclo, veículo e combustível	73
	8.3	Licenciamentos anuais de veículos novos por tipo de ciclo	75
	8.4	Consumo de combustível por categoria de veículos	79
	8.4	1.1 Distribuição do consumo de combustível por tipo de veículo	79
	8.4	1.2 Distribuição do consumo do veículo por tipo de combustível	83
	8.5	Fatores de Ajuste e Correção do Consumo de Combustível	88
	8.6	Programa de Controle de Poluição do Ar por Veículos Automotores	90
	8.7	Emissões	94

Lista de Tabelas

	Pagina
Tabela 1 — Fração dos veículos flex fuel utilizando gasolina C e etanol hidratado, por ano	17
Tabela 2 — Categorização da frota de veículos	20
Tabela 3 – Parâmetros utilizados na curva de sucateamento por tipo de veículo	22
Tabela 4 – Intensidade de uso de referência para veículos do Ciclo Otto (km/ano)	24
Tabela 5 — Intensidade de uso de referência para veículos do Ciclo Diesel (km/ano)	26
Tabela 6 – Quilometragem por litro de combustível para automóveis e veículos comerciais leves do Ci	clo Otto
(km/L)	28
Tabela 7 – Quilometragem por litro de combustível para motocicletas (km/L)	30
Tabela 8 – Quilometragem por litro de combustível para veículos do ciclo Diesel(km/L)	31
Tabela 9 – Cronologia da mistura carburante automotiva (etanol anidro/gasolina A)	37
Tabela 10 – Fatores de conversão de g/km para kg/TJ para gasolina C	37
Tabela 11 – Fatores de conversão de g/km para kg/TJ para etanol hidratado	38
Tabela 12 – Fatores de conversão de g/km para kg/TJ para motores do Ciclo Diesel	38
Tabela 13 – Fatores de conversão de g/km para kg/TJ para GNV	38
Tabela 14 − Fatores de emissão de CO2	39
Tabela 15 — Fatores médios de emissão de veículos novos	40
Tabela 16 – Fatores de emissão variáveis de automóveis nos anos (kg/TJ) – gasolina C	43
Tabela 17 – Fatores de emissão variáveis de automóveis nos anos (kg/TJ) – álcool hidratado	43
Tabela 18 – Fatores de emissão variáveis de automóveis nos anos (kg/TJ) – flex – gasolina C	44
Tabela 19 – Fatores de emissão variáveis de automóveis nos anos (kg/TJ) – flex – álcool hidratado	44
Tabela 20 – Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) – gasolina C	45
Tabela 21 – Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) – álcool hidratado	45
Tabela 22 – Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ)–flex–gasolina C	46
Tabela 23 – Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) – flex – álcool hidratad	o 46
Tabela 24 — Incremento nos fatores de emissão após 80.000 km rodados	47
Tabela 25 – Fatores de emissão de CH ₄ , N_2O , CO, NO_x e NMVOC para veículos movidos a GNV.	48
Tabela 26 – Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) – gasolina C	49
Tabela 27 – Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) – flex – gasolina C	50
Tabela 28 – Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) – flex – álcool hidratado	50
Tabela 29 – Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) – diesel	52
Tabela 30 – Fatores de emissão variáveis de ônibus urbano nos anos (kg/TJ) – diesel	53
Tabela 31 – Fatores de emissão variáveis de ônibus rodoviário nos anos (kg/TJ) – diesel	53
Tabela 32 – Fatores de emissão variáveis de caminhões leves nos anos (kg/TJ) – diesel	54
Tabela 33 – Fatores de emissão variáveis de caminhões médios nos anos (kg/TJ) – diesel	54
Tabela 34 – Fatores de emissão variáveis de caminhões pesados nos anos (kg/TJ) – diesel	55
Tabela 35 – Evolução da frota estimada por veículos do Ciclo Otto	73

Tabela 36 — Evolução da frota estimada por veículos do Ciclo Diesel	74
Tabela 37 – Licenciamentos anuais de veículos novos Ciclo Otto por tipo de combustível (em mil veículos)	<i>75</i>
Tabela 38 – Licenciamentos anuais de veículos novos Ciclo Diesel por tipo de combustível (em mil veículos)	77
Tabela 39 — Distribuição do consumo de gasolina C por tipo de veículo (em 10 ⁶ m³)	79
Tabela 40 — Distribuição do consumo de etanol hidratado por tipo de veículo (em 10 ⁶ m³)	81
Tabela 41 – Distribuição do consumo de diesel por tipo de veículo (em 10 ⁶ m³)	82
Tabela 42 — Distribuição do consumo combustível por automóveis (em 10 ⁶ m³)	83
Tabela 43 — Distribuição do consumo combustível por veículos comerciais leves (em 10 ⁶ m³)	84
Tabela 44 — Distribuição do consumo combustível por motocicletas (em 10 ⁶ m³)	85
Tabela 45 — Distribuição do consumo do diesel por ônibus (em 10 ⁶ m³)	86
Tabela 46 — Distribuição do consumo de diesel por caminhões (em 10 ⁶ m³)	87
Tabela 47 — Estratégia de implantação do PROCONVE para veículos leves (Fases "L")	91
Tabela 48 – Estratégia de implantação do PROCONVE para veículos pesados (Fases "P")	93
Tabela 49 – Estratégia de implantação do PROMOT (Fases "M")	93
Tabela 50 – Emissões de CO₂ por tipo de combustível	94
Tabela 51 – Emissões de CO₂ por tipo de veículo	95
Tabela 52 – Emissões de CO por tipo de combustível	96
Tabela 53 – Emissões de CO por tipo de veículo	97
Tabela 54 – Emissões de CH₄ por tipo de combustível	98
Tabela 55 – Emissões de CH₄ por tipo de veículo	99
Tabela 56 − Emissões de NOx por tipo de combustível	100
Tabela 57 − Emissões de NOx por tipo de veículo	101
Tabela 58 – Emissões de N₂O por tipo de combustível	102
Tabela 59 – Emissões de N₂O por tipo de veículo	103
Tabela 60 – Emissões de NMVOC por tipo de combustível	104
Tabela 61 – Emissões de NMVOC por tipo de veículo	105

Lista de Figuras

P	agina
Figura 1 — Fração da frota de veículos Flex Fuel operando com AEHC em função da relação dos preços e	ntre o
AEHC e a gasolina C, nos postos, em cada unidade da federação	17
Figura 2 — Procedimentos adotados para estimar o consumo de combustível	18
Figura 3 – Procedimentos para estimar a frota de veículos	21
Figura 4 – Curvas de sucateamento por tipo de veículo	22
Figura 5 — Intensidade de uso de referência para veículos do Ciclo Otto (km/ano)	24
Figura 6 — Intensidade de uso de referência para veículos do Ciclo Diesel (km/ano)	26
Figura 7 – Quilometragem por litro de combustível para automóveis e veículos comerciais leves do Ciclo	Otto
(km/L)	28
Figura 8 — Distribuição do consumo de gasolina C no transporte rodoviário por tipo de veículo	31
Figura 9 — Distribuição do consumo de etanol hidratado no transporte rodoviário por tipo de veículo	32
Figura 10 — Distribuição do consumo de diesel no transporte rodoviário por tipo de veículo	32
Figura 11 — Distribuição do consumo combustível por automóveis	33
Figura 12 — Distribuição do consumo combustível por veículos comerciais leves	33
Figura 13 — Distribuição do consumo combustível por motocicletas	34
Figura 14 — Distribuição do consumo combustível por ônibus	34
Figura 15 — Distribuição do consumo combustível por caminhões	35
Figura 16 – Consumo de GNV no transporte rodoviário	36
Figura 17 – Emissões de CO₂ por tipo de combustível	56
Figura 18 – Emissões de CO₂ por tipo de veículo	57
Figura 19 — Emissões de CO por tipo de combustível	57
Figura 20 — Emissões de CO por tipo de veículo	58
Figura 21 — Emissões de CH₄ por tipo de combustível	59
Figura 22 – Emissões de CH₄ por tipo de veículo	59
Figura 23 – Emissões de NO $_X$ por tipo de combustível	60
Figura 24 – Emissões de NO $_X$ por tipo de veículo	60
Figura 25 — Emissões de NMVOC por tipo de combustível	61
Figura 26 – Emissões de NMVOC por tipo de veículo	61
Figura 27 – Emissões de N₂O por tipo de combustível	62
Figura 28 – Emissões de N₂O por tipo de veículo	63
Figura 29 – Comparação entre as Emissões dos Inventários – CO ₂	65
Figura 30 – Comparação entre as Emissões dos Inventários – CO	65
Figura 31 – Comparação entre as Emissões dos Inventários – NMVOC	66
Figura 32 – Comparação entre as Emissões dos Inventários – CH ₄	66
Figura 33 − Comparação entre as Emissões dos Inventários − N ₂ O	67
Figura 34 – Comparação entre as Emissões dos Inventários – NO _x	67

Figura 35 – Consumo estimado x observado – Gasolina C	88
Figura 36 – Consumo estimado x observado – Etanol hidratado	88
Figura 37 – Consumo estimado x observado – Diesel	89

Siglas

ABRACICLO - Associação Brasileira dos Fabricantes de Motocicletas, Ciclomotores, Motonetas, Bicicletas e Similares

ANFAVEA - Anuário da Associação Nacional dos Veículos Automotores

ANP - Agência Nacional de Petróleo

BEN - Balanço Energético Nacional

CH₄ - metano

CO - monóxido de carbono

CO₂ - dióxido de carbono

CONAMA - Conselho Nacional do Meio Ambiente

CORINAIR - Core Inventory Air Emissions

CETESB - Companhia de Tecnologia de Saneamento Ambiental

DETRAN - Departamento Estadual de Trânsito

DENATRAN - Departamento Nacional de Trânsito

EPE - Empresa de Pesquisa Energética

GNV - Gás natural veicular

IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

IPCC - International Pannel on Climate Change

IPEA - Instituto de Pesquisa Econômica Aplicada

IPT - Instituto de Pesquisas Tecnológicas

ISSRC - International Sustainable Systems Research Center (EUA)

LEAP - Longe-range Energy Alternatives Planning System

MAPA - Ministério da Agricultura, Pecuária e Abastecimento

MCT - Ministério da Ciência e Tecnologia

MMA - Ministério do Meio Ambiente

MP - material particulado

 $\mathsf{NMHC}_{\mathsf{escap}}$ - hidrocarbonetos não-metano referentes à emissão de escapamento

NMVOC - compostos orgânicos voláteis não-metano (inglês)

N₂O - óxido nitroso

NO_x - óxido de nitrogênio

PECO - Programa de Economia de Combustível

PNPB - Programa Nacional da Poluição e Uso de Biodiesel

PROCONVE - Programa de Controle de Emissões Veiculares

PROMOT - Programa de Controle da Poluição do Ar por Motociclos e Veículos Similares

PRONAR - Programa Nacional de Controle da Qualidade do Ar

SINDIPEÇAS - Sindicato Nacional de Indústria de Componentes para Veículos Automotores

THC - hidrocarbonetos totais

Apresentação

O Inventário Nacional de Emissões e Remoções Antrópicas de Gases de Efeito Estufa não controlados pelo Protocolo de Montreal (Inventário) é parte integrante da Comunicação Nacional à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (Convenção de Mudança do Clima). A Comunicação Nacional é um dos principais compromissos de todos os países signatários da Convenção sobre Mudança do Clima.

A responsabilidade da elaboração da Comunicação Nacional é do Ministério da Ciência, Tecnologia e Inovação, ministério responsável pela coordenação da implementação da Convenção de Mudança do Clima no Brasil, conforme divisão de trabalho no governo, que foi estabelecida em 1992. A Terceira Comunicação Nacional Brasileira foi elaborada de acordo com as Diretrizes para Elaboração das Comunicações Nacionais dos Países não Listados no Anexo I da Convenção (países em desenvolvimento) (Decisão 17/CP.8 da Convenção) e as diretrizes metodológicas do Painel Intergovernamental de Mudança do Clima (IPCC).

Em atenção a essas Diretrizes, o presente Inventário revisa as informações apresentadas no Segundo Inventário (1990 - 2005) e inclui os valores referentes ao período 2005 - 2010, de modo que o mesmo realiza uma análise de 1990 - 2010.

Como diretriz técnica básica, foram utilizados os documentos elaborados pelo IPCC "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories" publicado em 1997, o documento "Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", publicado em 2000, e o documento "2006 IPCC Guidelines for National Greenhouse Gas Inventories", publicado em 2006.

Ressalta-se que, de acordo com tais diretrizes, o Inventário deve ser completo, acurado, transparente, comparável, consistente e ser submetido a um processo de controle de qualidade. Dessa forma, a elaboração do Inventário contou com a participação ampla de entidades governamentais e não-governamentais, incluindo ministérios, institutos, universidades, centros de pesquisa e entidades setoriais da indústria. Os estudos elaborados resultaram em um conjunto de Relatórios de Referência, do qual este relatório faz parte, contendo as informações utilizadas, descrição da metodologia empregada e critérios adotados.

Todos os Relatórios de Referência foram submetidos a uma consulta ampla de especialistas que não participaram na elaboração do Inventário diretamente, como parte do processo de controle e garantia de qualidade. Esse processo foi essencial para assegurar a qualidade e a correção da informação que constitui a informação oficial do governo brasileiro submetida à Convenção de Mudança do Clima.

Sumário Executivo

Este relatório apresenta as estimativas de emissões de gases de efeito estufa ocorridas no subsetor de Transporte Rodoviário no período de 1990 a 2010. Os gases considerados são o dióxido de carbono (CO_2) , o metano (CH_4) e o óxido nitroso (N_2O) , classificados como agentes diretos, e os gases precursores ou agentes indiretos do efeito estufa, como o monóxido de carbono (CO), os óxidos de nitrogênio (designados genericamente como NO_x), hidrocarbonetos (HC) e compostos orgânicos voláteis não metânicos (do inglês, *Non Methane Volatile Organic Compounds* - NMVOC).

O trabalho realizado segue as recomendações contidas no Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 1997), no "Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories" (IPCC, 2000) e no documento "2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC, 2006). As emissões dos gases têm como base os dados de consumo de combustíveis provenientes da modelagem realizada através do modelo LEAP (Long-range Energy Alternatives Planning System), a partir das bases de dados oficiais e de fatores de emissão específicos, conforme serão apresentados nas próximas seções.

No período de 1990 a 2010, o consumo total de combustíveis do transporte rodoviário cresceu de 29.276 para 63.964 mil tep¹ (118%), observando-se algum grau de competição entre a gasolina C e o álcool hidratado. São também fatos marcantes a rápida queda dos fatores de emissão no caso dos gases não-CO₂ e a entrada de veículos de tecnologia nova (*flex fuel*), que induziu a recuperação do consumo de álcool hidratado a partir de 2003. A Tabela I apresenta o consumo final energético do subsetor de transporte rodoviário por combustível para os anos de 1990, 1995, 2000, 2005 e 2010, em mil tep. Não são observadas grandes alterações no perfil de consumo de combustíveis deste subsetor.

Tabela I - Consumo final energético do subsetor de transporte rodoviário, por combustível

Combustível	1990	1995	2000	2005	2010	Part. em 1990	Part. em 2010
		(mil 1	tep)			%	%
Diesel	15.983	20.038	23.410	25.804	32.639	46,7	44,6
Gasolina	8.221	13.219	17.455	19.357	22.866	27,3	34,6
Álcool Etílico	5.205	5.202	2.855	2.963	8.292	26,1	18,7
Gás Natural Veicular	2	43	275	1.711	1.767	0,0	2,0
Total	29.276	38.008	42.766	48.074	63.964	100	100

Fonte: BEN (2013)

A Tabela II apresenta as emissões estimadas de CO_2 por combustível. Tendo em vista a importância do consumo de diesel no subsetor, observa-se a predominância das emissões de CO_2 derivadas do

¹ Tonelada equivalente de petróleo.

consumo desse combustível (52,4% de participação nas emissões totais de CO_2 do subsetor em 2010).

Tabela II - Emissões de CO₂ por combustível

Combustível	1990	1995	2000	2005	2010			
Compastivet		Gg						
Diesel	48.050	58.260	72.358	80.066	99.106			
Gasolina A	20.740	29.899	38.469	44.851	49.183			
Gás Natural Veicular	5	101	646	2.751	4.151			
Total Fóssil	68.795	88.260	111.473	127.667	152.440			
Biodiesel	0	0	0	0	99.106			
Etanol Anidro	2.196	5.976	8.609	7.955	11.730			
Etanol Hidratado	15.429	15.027	8.224	8.546	24.420			
Total Biomassa ⁽¹⁾	17.625	21.003	16.833	16.501	38.288			

⁽¹⁾ As emissões de CO₂ estimadas para os combustíveis de biomassa devem ser informadas, porém não são contabilizadas no total de emissões do setor de Energia.

O comportamento das emissões dos chamados gases não- CO_2 , a saber: monóxido de carbono (CO), metano (CH₄), óxido nitroso (NO_x), óxido de nitrogênio (N₂O) e os compostos voláteis não metânicos (NMVOC), é apresentado na Tabela III considerando todos os combustíveis para o período de 1990 a 2010.

Tabela III - Emissões de gases não - CO₂

Gases não - CO ₂	CH₄	N ₂ O	СО	NO _x	NMVOC
Gases Hau - CO2			Gg		
1990	72,1	2,72	5.807,7	1.026,3	536,9
1995	71,4	4,25	5.292,3	1.192,1	507,3
2000	61,6	6,95	3.817,3	1.271,7	404,7
2005	62,2	8,90	3.054,6	1.208,9	348,9
2010	61,3	12,52	2.715,1	1.225,2	294,7

1 Introdução

O problema causado pelas emissões veiculares foi alvo de uma das primeiras manifestações públicas no país sobre cuidados com o meio ambiente. Na década de setenta, a fumaça preta emitida pelos veículos a óleo diesel apareceu como problema ambiental devido à implantação da indústria automobilística, atrelada à rápida urbanização. A criação do Programa Nacional do Álcool (Proálcool), motivada pela crise de suprimento internacional do petróleo, foi saudada em âmbito internacional como iniciativa pioneira a favor da qualidade do ar em grandes centros urbanos. Em 1989, o Conselho Nacional do Meio Ambiente (CONAMA) editou a Portaria nº10, estabelecendo níveis de emissão para veículos novos. A Companhia Ambiental do Estado de São Paulo (CETESB), vinculada ao Governo do Estado de São Paulo, ficou encarregada do desenvolvimento do Programa de Controle de Emissões Veiculares (PROCONVE).

Nas três últimas décadas, observou-se várias mudanças no cenário automotivo nacional, incluindo a consolidação do Proálcool, a dedicação quase exclusiva do óleo diesel ao transporte coletivo urbano e ao rodoviário de carga, a introdução do catalisador nos veículos de ciclo Otto, sucessivas Portarias do CONAMA visando à redução dos níveis de emissão, bem como a utilização do biodiesel. Com isso, deu-se início à medição de emissões e a divulgação dos respectivos fatores.

Por ser uma ferramenta utilizada no desenvolvimento de políticas públicas destinadas à mitigação das mudanças climáticas, é importante que o inventário apresente os resultados de forma desagregada. Portanto, o presente relatório apresenta as estimativas das emissões de gases de efeito estufa, direto e indireto (CO_2 , CH_4 , N_2O , CO, NO_x e NMVOC), por tipo de veículo e por combustível, relacionadas ao subsetor de Transporte Rodoviário. O cálculo das emissões foi feito para veículos movidos a álcool, gasolina, gás natural veicular, e diesel para o período de 1990 a 2010 e por tipo de veículo - automóveis, veículos comerciais leves, motocicletas, ônibus (urbano e rodoviário) e caminhões (leves, médios e pesados).

O número de veículos licenciados a cada ano foi extraído do Anuário da Associação Nacional dos Veículos Automotores (ANFAVEA, 2014). O consumo de combustíveis foi calculado a partir da modelagem realizada através da plataforma LEAP (*Long-range Energy Alternatives Planning System*), considerando-se as bases de dados oficiais, que será melhor explicada no Anexo 8.1. A desagregação considerou as categorias de veículos (automóveis, veículos comerciais leves, motocicletas, ônibus - urbano e rodoviário - e caminhões - leves, médios e pesados) e os combustíveis (álcool, gasolina, gás natural veicular, e diesel).

Quanto às emissões, o fator de emissão do CO_2 foi considerado o dado pelo IPCC (2006). Para os demais gases, foram usados os fatores de emissão calculados pela CETESB (CETESB, 2014), convertidos da unidade original (g/km) para a unidade usual da metodologia *bottom-up* do IPCC (kg/TJ). Os fatores foram ponderados para o ano de cálculo, segundo a composição da frota circulante, por ano de licenciamento.

2 Metodologia

2.1 Consumo de combustível

A partir da frota por tipo de veículo, da intensidade de uso de referência (km/ano) e da quilometragem por litro (km/L), é possível estimar o consumo de combustível de cada categoria através da seguinte equação:

$$C_{i,estimado} = (Fr_{i,estimada} \times IU_{i,referência})/QL_{i}$$

Equação 1

Onde:

C_{i.estimado} é o consumo anual de combustível do veículo do tipo i (L/ano);

Fr_{i,estimada} é a frota em circulação estimada do veículo i por ano (número de veículos);

IU_{i,referência} é a intensidade de uso de referência do veículo do tipo i, expressa em termos de quilometragem anual percorrida (km/ano);

QL_i é a quilometragem por litro de combustível do veículo do tipo i (km/L).

As informações de frota, intensidade de uso e quilometragem estão detalhadas nos subitens 3.1, 3.2 e 3.3, respectivamente.

A partir da agregação do consumo de combustível pelas várias categorias de veículos, consumo este modelado através do LEAP, estima-se o consumo total dos combustíveis de toda a frota, através da Equação 1. Esse consumo de combustível é, então, comparado com o consumo de combustível observado para todo o setor rodoviário, a partir das informações presentes no Balanço Energético Nacional (BEN). A razão entre o consumo estimado e o consumo observado gera um fator de correção para o ajuste dos valores de intensidade de uso e, a partir destes novos valores, são calculados os valores ajustados de consumo de combustível para cada tipo de veículo e suas respectivas emissões. Maiores informações sobre os fatores de correção estão no Anexo 8.5.

$$C_{\text{estimado}} = \Sigma C_{\text{i.estimado}}$$
 Equação 2

Onde:

 C_{estimado} é o consumo total de combustível por categoria de veículos (L/ano), estimado a partir dos valores de intensidade de uso de referência (km/ano).

$$IU_{i,ajustada} = IU_{i,referência} \times (C_{observado}/C_{estimado})$$
 Equação 3

Onde:

IU_{i,aiustada} é a intensidade de uso ajustada do veículo do tipo i (km/ano);

 $C_{observado}$ é o consumo anual total de combustível por categoria de veículos, apresentada no BEN (L/ano).

 $C_{i,ajustado} = (Fr_{i,estimada} \times IU_{i,ajustado})/QL_i$

Equação 4

Onde:

 $C_{i,ajustado}$ é o consumo anual de combustível (L/ano) do veículo do tipo i, calculado a partir do valor de quilometragem por litro ajustado.

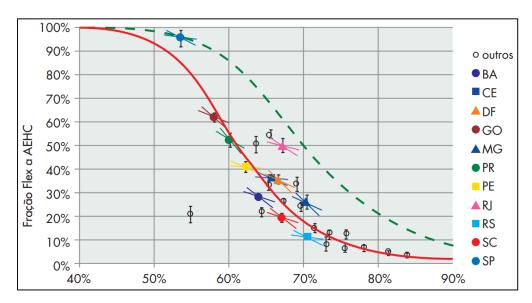
Vale destacar que o procedimento descrito acima é realizado para cada tipo de combustível, exceto para o caso do GNV, conforme será detalhado na seção 3.4.3, uma vez que suas emissões estimadas são provenientes de uma abordagem *top-down*. No Brasil, a comercialização de veículos novos movidos a GNV é pouco significativa e, basicamente, a frota em circulação é composta apenas por veículos convertidos para o uso de GNV a partir da instalação de *kits* de conversão.

Como não estão disponíveis informações consistentes e detalhadas acerca da frota convertida, especialmente no que se refere ao número de conversões anuais por ano modelo e por combustível original dos veículos convertidos, não é possível utilizar o procedimento descrito acima. Portanto, adota-se a seguinte metodologia:

 $E = C_{GNV} \times FE$ Equação 5

Onde:

E é a taxa anual de emissão do poluente considerado (g/ano);


C_{GNV} é o consumo anual de GNV (m³/ano);

FE é o fator de emissão do poluente considerado, expresso em termos da massa de poluente emitida por volume de GNV consumido (g/m^3) .

Convém ainda destacar que, a partir da introdução dos veículos *flex fluel* em 2003 e de sua rápida penetração no mercado de vendas de veículos novos, é necessário conhecer em que proporção estes veículos estão utilizando etanol hidratado ou gasolina C, dado que seus fatores de emissão dependem do combustível utilizado. Foi utilizada a curva apresentada no Caderno de Bioenergia

no estado de São Paulo (Goldemberg *et al.*,2008)², que relaciona o consumo de combustível em veículos *flex fuel* e a razão de preços entre etanol hidratado e gasolina, produzindo uma função estatística. Portanto, aplicou-se esta função, a partir dos preços médios anuais de etanol hidratado e gasolina C fornecidos pela Agência Nacional de Petróleo (ANP), estimando-se, assim, a fração da frota de veículos *flex fuel* que utiliza cada combustível, conforme a Tabela 1.

Figura 1 - Fração da frota de veículos *Flex Fuel* operando com AEHC em função da relação dos preços entre o AEHC e a gasolina C, nos postos, em cada unidade da federação

Fonte: Goldemberg (2008)

Tabela 1 - Fração dos veículos flex fuel utilizando gasolina C e etanol hidratado, por ano

Combustível	Anos							
Compastivet	2003	2004	2005	2006	2007	2008	2009	2010
Gasolina C	67%	40%	45%	70%	45%	43%	47%	47%
Etanol hidratado	33%	60%	55%	30%	55%	57%	53%	53%

Fonte: Adaptado de MMA (2011).

2.2 Sistematização dos procedimentos para estimar o consumo de combustível

A Figura 2 demonstra a sequência lógica adotada para estimar o consumo de combustíveis por tipo de veículo para cada ano. Tal sequência está detalhada no capítulo seguinte (Capítulo 3). Conforme mostram as Equações 1 e 4 e a Figura 2, a modelagem do consumo de combustíveis depende

² Optou-se por utilizar a curva de Goldemberg (2008) no lugar da curva da EPE (2013), pois o primeiro estudo apresenta os dados por unidade da federação, enquanto o segundo, por município. Tratando-se de um inventário nacional, adotou-se tal curva.

essencialmente da frota de veículos, da intensidade de uso e da quilometragem por litro de combustível. Destaca-se que no canto superior esquerdo de cada caixa é referenciada a sua respectiva seção no relatório.

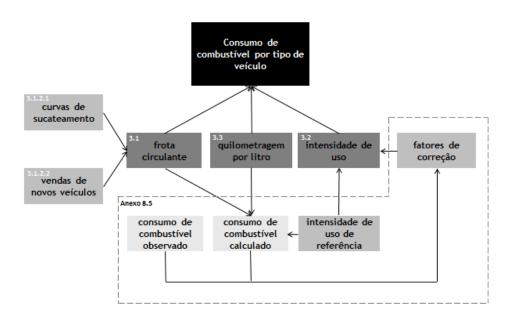


Figura 2 - Procedimentos adotados para estimar o consumo de combustível

Fonte: Elaboração própria.

2.3 Fatores de Emissão

Uma vez tendo calculado e corrigido o consumo de combustível, o próximo passo é determinar os fatores de emissão médios para cada ano, para cada tipo de veículo. Deve-se destacar que o perfil de combustíveis do subsetor de Transporte Rodoviário do Brasil difere-se substancialmente dos de outros países devido à mistura de etanol anidro na gasolina e pelo uso do etanol hidratado e do GNV. Assim, a utilização de fatores de emissão divulgados em órgãos internacionais apoiou-se na análise das características específicas do consumo no Brasil.

Neste Inventário, foram considerados os poluentes CO_2 , CH_4 , N_2O , CO, NO_x e NMVOC, e a unidade utilizada é a padrão do IPCC, $kg_{poluente}/TJ_{combustível}$. Os dados dos fatores de emissão foram obtidos em estudos na unidade g/km e devidamente convertidos.

No entanto, os dados dos estudos aplicam-se somente a veículos novos. Todavia, o cálculo das emissões engloba todos os veículos, novos e usados, de tal modo que, para garantir a melhor representação destes fatores, é necessário utilizar os fatores de emissão efetivos. Tais valores são obtidos através de uma ponderação pela frota, conforme será apresentado na seção 4.1.

As emissões totais dos poluentes são calculadas multiplicando-se os fatores de emissão efetivos pelo consumo total do combustível, conforme a Equação 6 a seguir.

$$E_{poluente} = FE_{poluente} \times C_{combustivel}$$

Equação 6

Onde:

E_{poluente} - emissão total do poluente (em Gg/ano);

FE_{poluente} - fator de emissão do poluente (em kg/TJ);

C_{combustível} - consumo de combustível (em TJ).

O Capítulo 4 dedica-se exclusivamente às estimativas dos fatores de emissão, incluindo dados, fontes e cálculos.

3 Consumo de Combustíveis

3.1 Frota de veículos

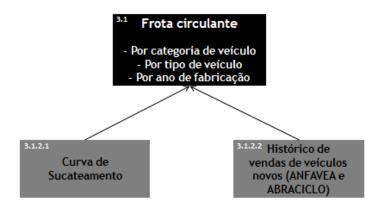
3.1.1 Categorização da frota de veículos

Como já mencionado, por ser uma ferramenta utilizada no desenvolvimento de políticas públicas destinadas à mitigação das mudanças climáticas, é importante que o inventário apresente os resultados de forma desagregada. Nesse caso, a desagregação da frota foi feita por tipo de motor e combustível, tipo de aplicação (transporte de carga ou passageiro), e capacidade ou porte do veículo, conforme demonstra a Tabela 2 a seguir.

Tabela 2 - Categorização da frota de veículos

Categorias	Motor/Combustivel	Aplicação	
Automóveis	Otto/Gasolina C Otto/Etanol Hidratado Otto/ <i>Flex Fuel</i> Otto/GNV	Transporte de passageiro	
Veículos Comerciais Leves	Otto/Gasolina C Otto/Etanol Hidratado Otto/ <i>Flex Fuel</i> Diesel	Transporte de passageiro e carga	
Motocicletas	Otto/Gasolina C Otto/Flex Fuel	Transporte de passageiro	
Caminhões leves (3,5t < PTB ³ < 10t)			
Caminhões médios (10t ≤ PTB < 15t)	Diesel	Transporte de carga	
Caminhões pesados (PTB ≥ 15t)			
Ônibus urbanos	Diesel	Transporte de	
Ônibus rodoviários	Dieset	passageiro	

Fonte: Elaboração própria.


Apenas veículos com capacidade de carga superior a 1.000 kg, ou veículos 4x4 com reduzida, podem utilizar Diesel no Brasil, logo não foram considerados automóveis do Ciclo Diesel. Também não foram considerados veículos 4x4 com reduzida no cálculo da frota, devido a sua baixa participação na mesma. Outra simplificação adotada foi em relação aos caminhões e ônibus do Ciclo Otto que, por possuírem uma participação pequena na frota, não fazem parte da categorização adotada no inventário.

³ Peso Bruto Total.

3.1.2 Procedimentos adotados para estimar a frota de veículos

A frota de veículos foi estimada aplicando-se uma curva de sucateamento sobre o parque de veículos existente, ou seja, o total de veículos existente em um dado ano (que se refere a uma porcentagem dos anos anteriores), além de considerar as vendas de veículos novos, fornecidas pela ANFAVEA e pela Associação Brasileira dos Fabricantes de Motocicletas, Ciclomotores, Motonetas, Bicicletas e Similares (ABRACICLO), conforme demonstram a Figura 3. O Anexo 8.2 apresenta os dados relativos à frota de veículos por tipo de Ciclo e por tipo de combustível.

Figura 3 - Procedimentos para estimar a frota de veículos

Fonte: Elaboração própria, com base em ANFAVEA (2011) e ABRACICLO (2014).

3.1.2.1 Curvas de sucateamento

O sucateamento dos veículos foi estimado a partir das curvas de duas naturezas: uma aplicada no caso dos automóveis, veículos comerciais leves, caminhões e ônibus e a outra, no caso das motocicletas.

Para calcular o número de veículos que permanecem em circulação no primeiro caso, utilizou-se a função logística de sucateamento apresentada a seguir:

$$SUCAT(t) = \frac{1}{(1 + \exp(a x (t - 1 - x0)))}$$
 Equação 6

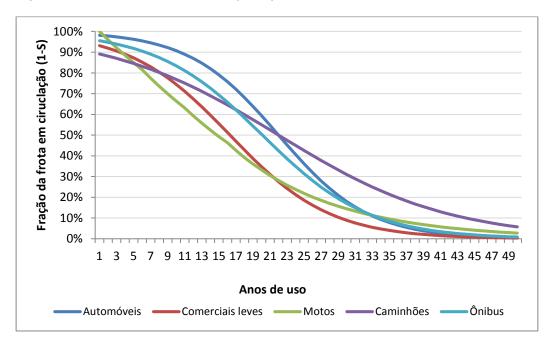
Onde:

- SUCAT (t) = fração de veículos sucateada na idade t;
- t = idade do veículo, determinada pela diferença entre o ano de referência e o ano de fabricação;
- $a \in x_0$ são parâmetros da função que dependem do tipo de veículo. Tais parâmetros são apresentados na Tabela 3 e foram calculados no Segundo Inventário Brasileiro de Emissões

Antrópicas de Gases de Efeito Estufa (MCT, 2010), de modo a ajustar a curva aos dados do DENATRAN/1997 (ECONOMIA E ENERGIA, 1999).

Tabela 3 - Parâmetros utilizados na curva de sucateamento por tipo de veículo

Tipo de veículo	Parâmetros				
ripo de veiculo	а	X ₀			
Automóveis	21	0,19			
Veículos comerciais leves	15,3	0,17			
Caminhões	21	0,10			
Ônibus	19,1	0,16			


Fonte: ECONOMIA E ENERGIA (1999).

No caso das motocicletas de até 200 cc, adotou-se a curva de sucateamento utilizada pelo SINDIPEÇAS (2009), cujas taxas anuais são:

- 4% nos primeiros 5 anos;
- 5% do 6° ao 10° ano;
- 6% do 11° ao 15° ano;
- 8% do 16° ano em diante.

Segue Figura 4 que apresenta as curvas de sucateamento por tipo de veículo, considerando a vida máxima para cada veículo de 53 anos.

Figura 4 - Curvas de sucateamento por tipo de veículo

Fonte: Elaboração própria com base em Economia e Energia (1999) e SINDIPEÇAS (2009).

3.1.2.2 Licenciamentos de veículos novos

No que diz respeito aos automóveis, veículos comerciais leves, ônibus e caminhões, os dados de licenciamento foram retirados do Anuário da ANFAVEA (2014), considerando o ano a partir de 1957 (primeiro ano com dados disponíveis), bem como de base de dados fornecidas diretamente pela ANFAVEA relativas à classificação de caminhões por PBT (peso bruto total) e de ônibus, entre urbano e rodoviário.

Com relação às motocicletas, as informações foram coletadas do website da ABRACICLO (2014).

O Anexo 8.3 apresenta os dados de licenciamentos dos veículos por tipo de Ciclo (Otto e Diesel) e por tipo de combustível.

3.2 Intensidade de Uso

3.2.1 Valores de referência para a intensidade de uso dos veículos

Os valores referentes à intensidade de uso da frota de veículos foram extraídos do 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2011), no qual são adotadas curvas de quilometragem anual percorrida decrescentes com a idade do veículo, baseadas em levantamentos de dados sobre a atividade de veículos na cidade de São Paulo do *International Sustainable Systems Research Center* em parceria com a CETESB, ISSRC (2004) e em um estudo do Instituto de Pesquisa Econômica Aplicada (IPEA) intitulado *Transporte Urbano e Inclusão Social: Elementos para Políticas Públicas*, Gomide (2003). No caso das motos, são adotados valores próximos aos adotados pelo Instituto de Pesquisas Tecnológicas (IPT, 2001).

3.2.1.1 Automóveis, veículos comerciais leves do ciclo Otto e motocicletas

Os valores de intensidade de uso para veículos do ciclo Otto são apresentados na Figura 5 e na Tabela 4 a seguir.

25.000 Quilometragem anual percorrida 20.000 15.000 (km/ano) 10.000 5.000 0 5 0 10 20 25 30 35 40 50 15 45 Anos de uso → Automóveis e Veículos Comerciais Leves Motocicletas

Figura 5 - Intensidade de uso de referência para veículos do Ciclo Otto (km/ano)

Tabela 4 - Intensidade de uso de referência para veículos do Ciclo Otto (km/ano)

Anos de uso	Automóveis e Veículos Comerciais Leves	Motocicletas
0	10.000	6.000
1	19.400	11.600
2	18.800	11.200
3	18.200	10.800
4	17.600	10.400
5	17.000	10.000
6	16.400	9.600
7	15.800	9.200
8	15.200	8.800
9	14.600	8.400
10	14.000	8.000
11	13.400	7.600
12	12.800	7.200
13	12.200	6.800
14	11.600	6.400
15	11.000	6.000
16	10.400	5.600
17	9.800	5.200
18	9.200	4.800
19	8.600	4.400
20	8.000	4.000

Anos de uso	Automóveis e Veículos Comerciais Leves	Motocicletas
21	7.400	3.600
22	6.800	3.200
23	6.200	2.800
24	5.600	2.400
25	5.000	2.000
26	4.400	2.000
27	3.800	2.000
28	3.200	2.000
29	2.600	2.000
30	2.000	2.000
31	2.000	2.000
32	2.000	2.000
33	2.000	2.000
34	2.000	2.000
35	2.000	2.000
36	2.000	2.000
37	2.000	2.000
38	2.000	2.000
39	2.000	2.000
40	2.000	2.000
41	2.000	2.000
42	2.000	2.000
43	2.000	2.000
44	2.000	2.000
45	2.000	2.000
46	2.000	2.000
47	2.000	2.000
48	2.000	2.000
49	2.000	2.000
50	2.000	2.000

3.2.1.2 Veículos do ciclo Diesel

Os valores de intensidade de uso para veículos do ciclo Diesel são apresentados na Figura 6 e na Tabela 5 a seguir.

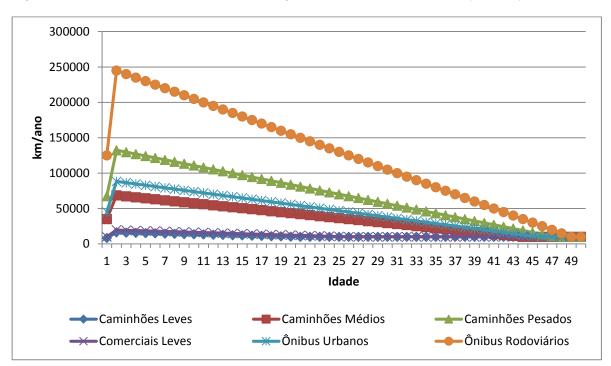


Figura 6 - Intensidade de uso de referência para veículos do Ciclo Diesel (km/ano)

Tabela 5 - Intensidade de uso de referência para veículos do Ciclo Diesel (km/ano)

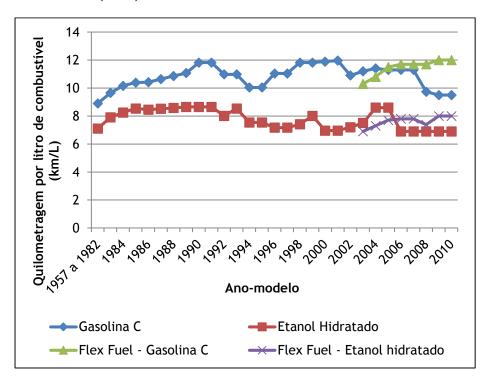
Anos de uso	Comerciais Leves	Ônibus Urbanos	Ônibus Rodoviários	Caminhões Leves	Caminhões Médios	Caminhões Pesados
1	10.000	45.000	125.000	8.265	35.000	67.500
2	19.600	88.200	245.000	16.199	68.600	132.300
3	19.200	86.400	240.000	15.868	67.200	129.600
4	18.800	84.600	235.000	15.537	65.800	126.900
5	18.400	82.800	230.000	15.207	64.400	124.200
6	18.000	81.000	225.000	14.876	63.000	121.500
7	17.600	79.200	220.000	14.546	61.600	118.800
8	17.200	77.400	215.000	14.215	60.200	116.100
9	16.800	75.600	210.000	13.884	58.800	113.400
10	16.400	73.800	205.000	13.554	57.400	110.700
11	16.000	72.000	200.000	13.223	56.000	108.000
12	15.600	70.200	195.000	12.893	54.600	105.300
13	15.200	68.400	190.000	12.562	53.200	102.600
14	14.800	66.600	185.000	12.232	51.800	99.900
15	14.400	64.800	180.000	11.901	50.400	97.200
16	14.000	63.000	175.000	11.570	49.000	94.500
17	13.600	61.200	170.000	11.240	47.600	91.800
18	13.200	59.400	165.000	10.909	46.200	89.100
19	12.800	57.600	160.000	10.579	44.800	86.400
20	12.400	55.800	155.000	10.248	43.400	83.700

21	12.000	54.000	150.000	10.000	42.000	81.000
22	11.600	52.200	145.000	10.000	40.600	78.300
23	11.200	50.400	140.000	10.000	39.200	75.600
24	10.800	48.600	135.000	10.000	37.800	72.900
25	10.400	46.800	130.000	10.000	36.400	70.200
26	10.000	45.000	125.000	10.000	35.000	67.500
27	10.000	43.200	120.000	10.000	33.600	64.800
28	10.000	41.400	115.000	10.000	32.200	62.100
29	10.000	39.600	110.000	10.000	30.800	59.400
30	10.000	37.800	105.000	10.000	29.400	56.700
31	10.000	36.000	100.000	10.000	28.000	54.000
32	10.000	34.200	95.000	10.000	26.600	51.300
33	10.000	32.400	90.000	10.000	25.200	48.600
34	10.000	30.600	85.000	10.000	23.800	45.900
35	10.000	28.800	80.000	10.000	22.400	43.200
36	10.000	27.000	75.000	10.000	21.000	40.500
37	10.000	25.200	70.000	10.000	19.600	37.800
38	10.000	23.400	65.000	10.000	18.200	35.100
39	10.000	21.600	60.000	10.000	16.800	32.400
40	10.000	19.800	55.000	10.000	15.400	29.700
41	10.000	18.000	50.000	10.000	14.000	27.000
42	10.000	16.200	45.000	10.000	12.600	24.300
43	10.000	14.400	40.000	10.000	11.200	21.600
44	10.000	12.600	35.000	10.000	10.000	18.900
45	10.000	10.800	30.000	10.000	10.000	16.200
46	10.000	10.000	25.000	10.000	10.000	13.500
47	10.000	10.000	20.000	10.000	10.000	10.800
48	10.000	10.000	15.000	10.000	10.000	10.000
49	10.000	10.000	10.000	10.000	10.000	10.000
50	10.000	10.000	10.000	10.000	10.000	10.000
_						

3.3 Quilometragem por litro de combustível (km/L)

3.3.1 Automóveis e veículos comerciais leves do ciclo Otto

Os valores de quilometragem por litro de combustível foram retirados do Guia Escolha Certo MIC/STI que, devido ao Programa de Economia de Combustível (PECO), publicou valores referentes à eficiência de automóveis fabricados entre 1983 e 1986 pelas quatro principais montadoras da época - Fiat, Ford, General Motors Brasil e Volkswagen Brasil. O Guia apresenta valores de quilometragem por litro de combustível para condução em ciclo urbano e em ciclo estrada. Optouse por utilizar os primeiros valores, pois os fatores de emissão de poluentes regulamentados são levantados neste ciclo.


A CETESB (2010) disponibiliza dados entre 2002 e 2010 para automóveis e veículos comerciais leves no Relatório de qualidade do ar no estado de São Paulo.

Para valores anteriores a 1983, foram adotados valores do PECO para veículos fabricados entre 1981 e 1982.

Valores de eficiência 1983 e 2001 foram extraídos do 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2011).

A Figura 7 e a Tabela 6 apresentam tais valores.

Figura 7 - Quilometragem por litro de combustível para automóveis e veículos comerciais leves do Ciclo Otto (km/L)

Fonte: MMA (2011).

Tabela 6 - Quilometragem por litro de combustível para automóveis e veículos comerciais leves do Ciclo Otto (km/L)

Ano de	Gasolina C	Etanol Hidratado	Flex fuel	
fabricação			Gasolina C	Etanol hidratado
1957 a 1982	8,9	7,1	-	-
1983	9,65	7,9	-	-
1984	10,16	8,25	-	-
1985	10,39	8,54	-	-

4004				
1986	10,42	8,46	-	-
1987	10,64	8,52	-	-
1988	10,86	8,58	-	-
1989	11,07	8,65	-	-
1990	11,82	8,65	-	-
1991	11,82	8,65	-	-
1992	10,98	8,01	-	-
1993	10,98	8,54	-	-
1994	10,04	7,54	-	-
1995	10,04	7,54	-	-
1996	11,04	7,17	-	-
1997	11,04	7,17	-	-
1998	11,82	7,41	-	-
1999	11,82	8,01	-	ı
2000	11,89	6,96	-	-
2001	11,97	6,96	-	-
2002	10,9	7,2	-	-
2003	11,2	7,5	10,3	6,9
2004	11,4	8,6	10,8	7,3
2005	11,3	8,6	11,5	7,7
2006	11,3	6,9	11,7	7,8
2007	11,3	6,9	11,7	7,8
2008	9,74	6,9	11,7	7,38
2009	9,5	6,9	12	8
2010	9,5	6,9	12	8

Fonte: Elaboração própria com base em MMA (2011).

3.3.2 Motocicletas

Os valores de eficiência para motocicletas foram calculados a partir dos fatores de emissão de CO₂, apresentados no Relatório de Qualidade do Ar no Estado de São Paulo 2009 (CETESB, 2010). A Equação 7 apresenta o método do balanço de carbono, utilizado para o cálculo da quilometragem por litro de combustível.

$$\mathcal{C} = \frac{[(0.8656\,X\,m_{THC}) + (0.4288\,X\,m_{CO}) + (0.2729\,X\,m_{CO2})] + (100 + \%v_{H2O}\,)}{\left(6.4487\,X\,\%v_{g\acute{a}s}\right) + (4.1102\,X\,\%v_{ETCH})}$$
 Equação 7

Onde:

- *C* é o consumo de combustível (L/100km);
- m_{THC} é a massa de THC emitida (g/km);
- m_{CO} é a massa de CO emitida (g/km);

- m_{CO2} é a massa de CO_2 emitida (g/km);
- V_{gas} é a porcentagem, em volume a 20°C, de gasolina pura no combustível utilizado;
- V_{TECH} é a porcentagem, em volume a 20°C, etanol anidro no combustível utilizado;
- V_{H2O} é a porcentagem, em volume a 20°C, de água no combustível utilizado.

Os valores de quilometragem por litro encontrados para os anos de 2003 a 2008 ficaram próximos a 40 km/L. Este valor foi adotado para todos os anos, conforme também realizado por MMA (2011), supondo que não houve uma melhora significativa em relação à eficiência das motocicletas.

Destaca-se que em 2009 foram introduzidas no mercado motocicletas *flex fuel*. Os valores de quilometragem por litro adotados para motocicletas *flex fuel* que utilizam gasolina C foram os mesmo das motocicletas dedicadas à gasolina. Em relação ao etanol, foi utilizada uma proporção aproximada igual a dos automóveis e veículos comerciais leves *flex fuel*. Estes valores estão apresentados na Tabela 7.

Tabela 7 - Quilometragem por litro de combustível para motocicletas (km/L)

Motor/Combustivel	Quilometragem por litro de combustível (km/L)
Gasolina	40
Flex Fuel (Gasolina C)	40
Flex Fuel (Etanol hidratado)	25

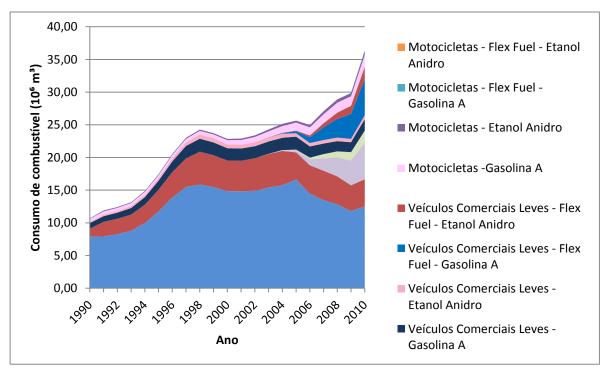
Fonte: MMA (2011).

3.3.3 Veículos do ciclo Diesel

Os valores de quilometragem por litro de combustível para veículo do ciclo Diesel foram baseados em dados levantados pela ANFAVEA⁴ em 2008 e pela Petrobras em 2010, complicados em MMA (2011), e estão apresentados na Tabela 8.

⁴ Os dados levantados pela ANFAVEA foram apresentados por ocasião das negociações da transação judicial firmada com força de ação civil pública com o Ministério Público Federal referente a não entrada em vigor da fase P6 do PROVOCONVE em 2009, prevista na Resolução CONAMA n°.315, de 2002.

Tabela 8 - Quilometragem por litro de combustível para veículos do ciclo Diesel(km/L)


Categoria	Quilometragem por litro de Diesel (km/L)
Comerciais Leves	9,09
Caminhões Leves	7,61
Caminhões Médios	5,56
Caminhões Pesados	3,17
Ônibus Urbano	2,30
Ônibus Rodoviário	3,03

3.4 Consumo de combustível por categoria de veículos

As Figuras 8 a 16 a seguir apresentam para os respectivos consumos de combustíveis (gasolina C, etanol hidratado, diesel e GNV) por tipo de veículos, bem como os consumos dos veículos por tipo de Ciclo combustível. As tabelas do Anexo 8.3 apresentam tais resultados.

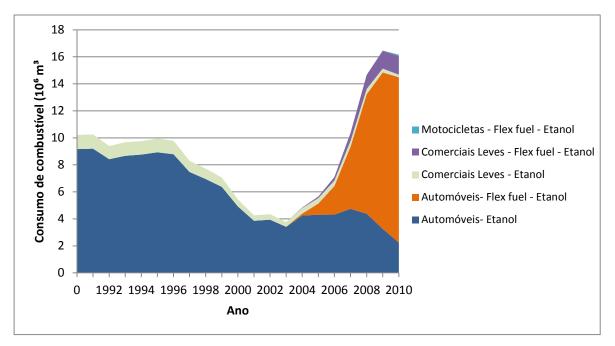

3.4.1 Distribuição do consumo de combustível por tipo de veículo

Figura 8 - Distribuição do consumo de gasolina C no transporte rodoviário por tipo de veículo

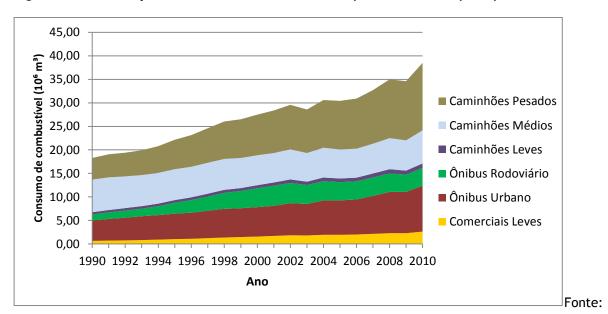
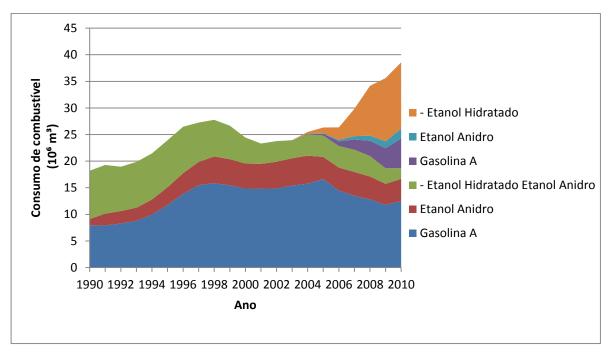

Fonte: Elaboração própria.

Figura 9 - Distribuição do consumo de etanol hidratado no transporte rodoviário por tipo de veículo

Fonte: Elaboração própria.


Figura 10 - Distribuição do consumo de diesel no transporte rodoviário por tipo de veículo

Elaboração própria.

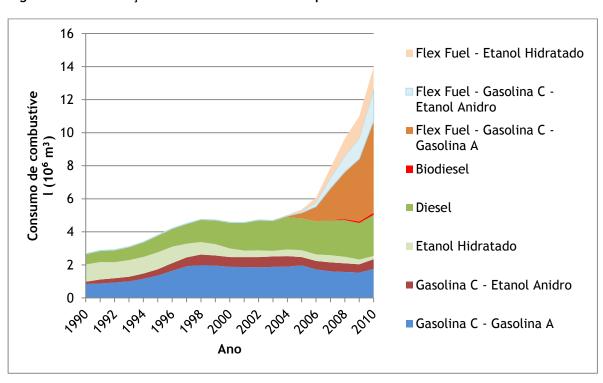

3.4.2 Distribuição do consumo do veículo por tipo de combustível

Figura 11 - Distribuição do consumo combustível por automóveis

Fonte: Elaboração própria.

Figura 12 - Distribuição do consumo combustível por veículos comerciais leves

Fonte: Elaboração própria.

Gasolina A

Etanol Anidro

■ Flex fuel - Etanol

hidratado

■ Flex fuel - Gasolina C -

2,00
1,80
1,60
1,40
1,20
1,00

Flex fuel - Gasolina C -

11 13 15 17 19 21

Figura 13 - Distribuição do consumo combustível por motocicletas

Fonte: Elaboração própria.

0,80

0,60

0,40

0,20

0,00

1 3 5

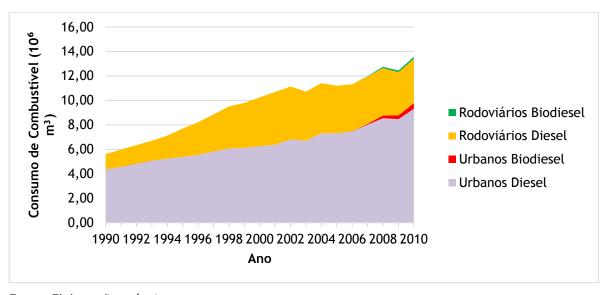


Figura 14 - Distribuição do consumo combustível por ônibus

9

Fonte: Elaboração própria.

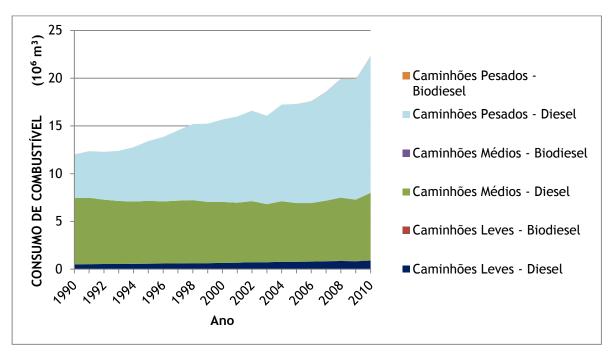
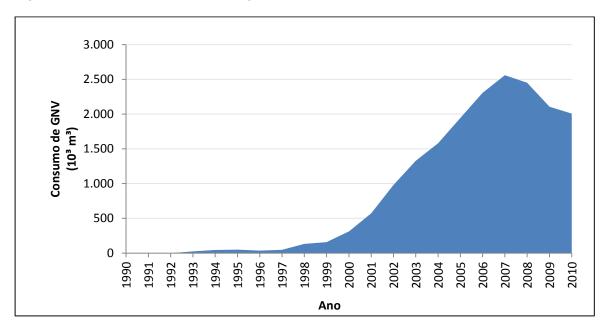


Figura 15 - Distribuição do consumo combustível por caminhões

Fonte: Elaboração própria.


3.4.3 Consumo de GNV

Conforme anteriormente apresentado, o cálculo das emissões estimadas do GNV é proveniente de uma abordagem *top-down*, devido ao fato de que não estão disponíveis informações consistentes e detalhadas acerca da frota convertida, especialmente no que se refere ao número de conversões anuais por ano modelo e por combustível original dos veículos convertidos.

A comercialização de veículos novos movidos a GNV no Brasil é pouco significativa e, basicamente, a frota em circulação é composta apenas por veículos convertidos para o uso de GNV a partir da instalação de kits de conversão. Dessa forma, o consumo de GNV considerou os dados apresentados nos Balanços Energéticos (BEN) (BEN, 2006; 2013)

Para o cálculo dos fatores de emissão, serão excluídos da frota de veículos a gasolina e a etanol, aqueles convertidos para GNV, dessa forma não haverá dupla contagem de emissões.

Figura 16 - Consumo de GNV no transporte rodoviário.

Fonte: Elaboração própria com base em BEN (2006; 2013).

4 Fatores de Emissão

Conforme enunciado pelo Capítulo 2, esta seção se dedica aos fatores de emissões, seus dados e cálculos envolvidos.

Já foi mencionado que os poluentes considerados são CO₂, CH₄, N₂O, CO, NO_x e NMVOC, e que a unidade de fatores de emissão utilizada é a padrão do IPCC, kg_{poluente}/TJ_{combustível}. Os dados foram obtidos do Relatório da Qualidade do Ar no Estado de São Paulo (CETESB, 2011a), do 1º Relatório de Referência do Estado de São Paulo de Emissões e Remoções Antrópicas de Gases de Efeito Estufa, Período de 1990 a 2008 (CETESB, 2011b) e do *International Pannel on Climate Change* (IPCC, 1997; 2000), de acordo com determinado tipo de poluente.

No entanto, como a maioria dos valores obtidos nos trabalhos citados dão os fatores de emissão em g_{poluente}/km, foi necessário realizar conversões para kg/TJ, de acordo com o tipo de combustível. Para a gasolina C, a conversão segue a mesma metodologia utilizado do Segundo Inventário, que leva em consideração a mistura gasolina A/etanol anidro, conforme a Tabela 9. Primeiro, multiplica-se o fator pela eficiência (km/l). Em seguida, utiliza-se o poder calorífico por unidade de volume. Por fim, utilizam-se as conversões de energia que constam no BEN. Os fatores de conversão estão na tabela abaixo Tabela 9.

Tabela 9 - Cronologia da mistura carburante automotiva (etanol anidro/gasolina A)

Ano	Álcool anidro (%)
1990	13%
1991-1997	22%
1998-2001	24%
2002-2004	25%
2005	20%
2006	23%
2007-2010	25%

Fonte: Elaboração própria com base em MAPA (2011).

Tabela 10 - Fatores de conversão de g/km para kg/TJ para gasolina C

De	Para	Fator				
g/km	g/l	eficiência do gasolina C por ano				
g/l	g/kcal	1/5.482				
g/kcal	g/TJ	1/4.186				
g/TJ	kg/TJ	10 ⁹				

Fonte: Modificado de MCT (2010).

A metodologia utilizada para o etanol hidratado, GNV e diesel segue raciocínio similar. Multiplicase, inicialmente, o fator em g/km pela eficiência de cada veículo (km/l). Para o GNV, a eficiência

é um valor único, de 12 km/m³. Em seguida, utilizou-se o coeficiente de equivalência médio para o combustível, fornecido pelo BEN (EPE, 2013), onde 1 m³ de etanol hidratado corresponde a 21,34 GJ, 1 m³ de diesel a 35,52 GJ e 10³ m³ de GNV a 36,84 GJ. Seguem abaixo nas Tabelas 11, 12 e 13 os fatores de conversão utilizados.

Tabela 11 - Fatores de conversão de g/km para kg/TJ para etanol hidratado

De	Para	Fator				
g/km	g/l	eficiência do etanol por ano				
g/l	kg/m³	1				
kg/m³	kg/TJ	1/(21,34 x 10 ⁻³)				

Fonte: Elaboração própria.

Tabela 12 - Fatores de conversão de g/km para kg/TJ para motores do Ciclo Diesel

De	Para	Fator
g/km	g/l	eficiência do diesel por veículo
g/l	kg/m³	1
kg/m³	kg/TJ	1/(35,52 x 10 ⁻³)

Fonte: Elaboração própria.

Tabela 13 - Fatores de conversão de g/km para kg/TJ para GNV

De	Para	Fator
g/km	g/m³	12
g/m³	kg/10 ³ m ³	103
kg/10 ³ m ³	kg/GJ	1/36,84
kg/GJ	kg/TJ	1/10 ⁻³

Fonte: Elaboração própria.

Os dados obtidos nos trabalhos citados referem-se apenas aos veículos novos. O cálculo das emissões engloba todos os veículos, novos e usados, de tal modo que, para garantir a melhor representação destes fatores, é necessário utilizar os fatores de emissão efetivos. Os mesmos são obtidos através da ponderação dos fatores de emissão novos pela frota, conforme a Equação 8 abaixo.

$$FE_{ef}(t) = [\sum_{i} FE_{i} \times F(i,t)] / \sum_{i} F(i,t)$$

Equação 8

Onde:

FE_i - fator de emissão do veículo novo licenciado no ano *i*;

F(i,t) - frota de veículos do ano i sobrevivente ao ano t.

As emissões totais dos poluentes são calculadas multiplicando-se os fatores de emissão efetivos pelo consumo total do combustível, conforme a Equação 9. Essa equação vale para todos os combustíveis, menos para o biodiesel, cuja metodologia está especificada adiante.

$$E_{poluente} = FE_{poluente} \times C_{combustível}$$

Equação 9

Onde:

E_{poluente} - emissão total do poluente (em Gg/ano).

FE_{poluente} - fator de emissão do poluente (em kg/TJ).

C_{combustível} - consumo de combustível (em TJ).

A seguir, serão apresentados os fatores de emissão dos respectivos poluentes dentro de cada categoria de veículos e seus cálculos associados. As emissões serão apresentadas no capítulo seguinte.

4.1 Fatores de emissão para CO₂

Os fatores de emissão de CO_2 são constantes ao longo do tempo e são aqueles constantes do *International Pannel on Climate Change* (IPCC, 2006), disponíveis em $kgCO_2/TJ$.

Tabela 14 - Fatores de emissão de CO₂

Gasolina A	Diesel	Etanol	GNV
(kg/TJ)	(kg/TJ)	(kg/TJ)	(kg/TJ)
69.300	74.070	70.770	56.100

Fonte: IPCC (2006).

4.2 Automóveis e Veículos Comerciais Leves do Ciclo Otto

4.2.1 Fatores de emissão para veículos novos

A determinação dos fatores de emissão para automóveis e comerciais leves do Ciclo Otto mostrouse diferente para cada poluente.

Para CO, os dados foram retirados do Relatório da Qualidade do Ar no Estado de São Paulo (CETESB, 2011a). Para CH_4 e N_2O e NO_X os dados foram retirados do Relatório Emissões Veiculares no Estado de São Paulo 2012 (CETESB, 2013). Para NMVOC, os dados foram baseados no 1° Relatório de Referência do Estado de São Paulo de Emissões e Remoções Antrópicas de Gases de Efeito Estufa, Período de 1990 a 2008 (CETESB, 2011b) e no 1° Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2011).

De acordo com o CETESB (2011b), o cálculo do NMVOC para automóveis e comerciais leves é ligeiramente mais detalhado. Deve-se destacar que a emissão total de NMVOC é formada pela soma das emissões de Hidrocarbonetos Não Metano (NMHC), que saem pelo escapamento do veículo com as emissões evaporativas de NMVOC, de acordo com a Equação 10.

$$NMVOC = NMHC_{escap} + NMVOC_{evap}$$

Equação 10

Onde:

NMVOC é a emissão total de NMVOC (g de NMVOC total);

NMHC_{escap} é emissão de NMHC do escapamento (g de NMHC);

NMVOC_{evap} é emissão de NMVOC evaporativa (g de NMVOC evaporativo);

Consequentemente, os valores dos fatores de emissão para NMVOC são obtidos através da equação acima. Para os fatores de emissão de NMHC_{escap}, utilizaram-se os dados dos fatores de emissão de HC da CETESB (2011a), conforme apresentado na Equação 11.

$$FE(HC) = FE(NMHC_{escap}) + FE(CH_4)$$

Equação 11

Onde:

FE(HC) é o fator de emissão de hidrocarbonetos totais (g/km);

FE(NMHC_{escap}) é o fator de emissão de hidrocarbonetos não-metânicos (g/km);

FE(CH₄) é o fator de emissão de CH₄ (g/km);

Os fatores de emissão de NMVOC_{evap} foram calculados utilizando-se as informações apresentadas no 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2011).

Tabela 15 - Fatores médios de emissão de veículos novos

Ano	Combustível	СО	NO _x	CH₄	NMVOC	N ₂ O
modelo	Combastivet			(kg/TJ)		
Até 1983	Gasolina C	33,0	1,4	0,450	990,49	1,98
ALC 1703	Etanol hidratado	18,0	1,0	0,240	453,04	2,00
1983	Gasolina C	28,0	1,6	0,360	1073,96	1,98
1703	Etanol hidratado	16,9	1,2	0,240	504,09	2,00
1984	Gasolina C	22,0	1,9	0,300	907,59	1,98
1904	Etanol hidratado	16,0	1,8	0,240	526,42	2,00
1985	Gasolina C	18,5	1,8	0,255	925,40	1,98
1703	Etanol hidratado	13,3	1,4	0,255	544,93	2,00

Ano	Combustível	CO	NO _x	CH₄	NMVOC	N ₂ O		
modelo	Compustivet	(kg/TJ)						
1986	Gasolina C	15,2	1,6	0,240	773,69	1,98		
1900	Etanol hidratado	12,8	1,1	0,240	539,82	2,00		
1987	Gasolina C	13,3	1,4	0,210	790,02	1,98		
1907	Etanol hidratado	10,8	1,2	0,195	543,65	2,00		
1988	Gasolina C	11,5	1,3	0,195	685,68	1,98		
1900	Etanol hidratado	8,4	1,0	0,165	581,66	2,00		
1989	Gasolina C	6,2	0,6	0,090	657,93	1,98		
1909	Etanol hidratado	3,6	0,5	0,090	551,95	2,00		
1990	Gasolina C	6,3	0,8	0,090	613,03	1,98		
1990	Etanol hidratado	4,2	0,6	0,105	447,94	2,00		
1991	Gasolina C	6,0	0,7	0,149	569,25	1,98		
1991	Etanol hidratado	4,6	0,7	0,186	379,03	2,00		
1992	Gasolina C	4,7	0,6	0,149	244,08	1,98		
1992	Etanol hidratado	4,6	0,7	0,186	191,45	2,00		
1993	Gasolina C	3,8	0,5	0,100	244,08	1,98		
1993	Etanol hidratado	3,9	0,7	0,160	238,14	2,00		
1994	Gasolina C	1,2	0,3	0,050	197,19	1,98		
1994	Etanol hidratado	0,9	0,3	0,080	181,56	2,00		
1995	Gasolina C	0,79	0,23	0,035	197,19	1,98		
1993	Etanol hidratado	0,67	0,24	0,051	181,56	2,00		
1996	Gasolina C	0,74	0,23	0,035	144,56	1,98		
1990	Etanol hidratado	0,60	0,22	0,045	147,99	2,00		
1997	Gasolina C	0,73	0,21	0,032	72,29	1,98		
1777	Etanol hidratado	0,63	0,21	0,048	74,01	2,00		
1009	Gasolina C	0,48	0,14	0,027	54,19	1,98		
1998	Etanol hidratado	0,66	0,08	0,040	48,45	2,00		
1999	Gasolina C	0,43	0,12	0,027	54,19	1,98		
1777	Etanol hidratado	0,74	0,08	0,043	46,87	2,00		
2000	Gasolina C	0,40	0,12	0,027	50,61	1,98		
2000	Etanol hidratado	0,77	1,09	0,043	43,12	2,00		
2001	Gasolina C	0,50	0,04	0,012	43,11	1,98		
2001	Etanol hidratado	0,51	0,14	0,040	35,93	2,00		
2002	Gasolina C	0,35	0,09	0,027	39,26	1,98		
2002	Etanol hidratado	0,82	0,08	0,045	39,61	2,00		
	Gasolina C	0,39	0,05	0,020	40,34	1,98		
	Etanol hidratado	0,46	0,14	0,037	41,26	2,00		
2003	Flex - Gasolina C	0,34	0,09	0,025	16,89	1,98		
	Flex - Etanol hidratado	0,82	0,08	0,045	35,60	2,00		
2004	Gasolina C	0,45	0,05	0,027	41,06	1,98		

Ano	Combustível	CO	NO _x	CH₄	NMVOC	N ₂ O
modelo	Combustivet					
	Etanol hidratado	0,39	0,10	0,037	50,29	2,00
	Flex - Gasolina C	0,33	0,08	0,020	28,29	1,98
	Flex - Etanol hidratado	0,67	0,05	0,032	35,17	2,00
	Gasolina C	0,48	0,05	0,025	37,01	1,98
	Etanol hidratado	0,47	0,07	0,029	50,29	2,00
2005	Flex - Gasolina C	0,33	0,08	0,020	41,40	1,98
	Flex - Etanol hidratado	nd	nd	0,032	37,06	2,00
	Gasolina C	0,48	0,05	0,025	29,61	1,98
	Etanol hidratado	0,47	0,07	0,029	28,50	2,00
2006	Flex - Gasolina C	0,37	0,039	0,014	38,33	1,98
	Flex - Etanol hidratado	nd	nd	0,032	29,53	2,00
	Gasolina C	0,51	0,041	0,023	39,42	1,98
	Etanol hidratado	0,71	0,048	0,019	nd	2,00
2007	Flex - Gasolina C	0,30	0,02	0,011	51,02	1,98
2007	Flex - Etanol hidratado	nd	nd	nd	40,2	2,00
	Gasolina C	0,33	0,03	0,011	17,85	1,98
	Etanol hidratado	0,56	0,032	0,011	nd	2,00
2008	Flex - Gasolina C	0,23	0,02	0,007	35,21	1,98
	Flex - Etanol hidratado	nd	nd	nd	18,0	2,00
	Gasolina C	0,3	0,03	0,009	17,41	1,98
	Etanol hidratado	0,56	0,032	0,05	nd	2,00
2009	Flex - Gasolina C	0,33	1,4	0,450	36,12	1,98
	Flex - Etanol hidratado	0,56	1,0	0,240	19,5	2,00
	Gasolina C	0,23	1,6	0,360	17,41	1,98
	Etanol hidratado	0,51	1,2	0,240	nd	2,00
2010	Flex - Gasolina C	0,28	1,9	0,300	36,12	1,98
	Flex - Etanol hidratado	0,51	1,8	0,240	19,5	2,00

nd: não disponível

Tabela 16 - Fatores de emissão variáveis de automóveis nos anos (kg/TJ) - gasolina C

	Transporte Rodoviário / Força Motriz / Gasolina C								
Gás/Ano	1990	1991	1992	1993	1994	1995	1996		
CH₄	166,87	161,71	153,38	141,91	130,84	119,31	107,71		
N ₂ O	1,95	1,96	1,95	1,95	2,97	4,05	5,03		
CO	12308,35	11818,64	11198,60	10348,45	9259,22	8032,83	7037,87		
NO _x	591,76	598,94	579,75	561,97	529,22	487,54	452,01		
NMVOC	962,94	932,83	885,10	819,18	732,28	641,90	563,00		
Gás/Ano	1997	1998	1999	2000	2001	2002	2003		
CH ₄	94,26	84,79	77,62	70,43	63,57	57,81	53,12		
N ₂ O	5,89	6,53	7,01	7,50	7,96	8,26	8,49		
CO	5746,93	5298,24	4766,76	4243,86	3751,28	3711,96	3011,34		
NO _x	375,29	376,67	354,20	330,57	305,19	283,36	265,88		
NMVOC	460,31	431,05	390,75	350,77	313,27	309,96	257,07		
Gás/Ano	2004	2005	2006	2007	2008	2009	2010		
CH ₄	49,12	46,15	44,02	42,17	40,89	39,66	38,56		
N ₂ O	8,70	8,86	8,98	9,09	9,19	9,28	9,37		
СО	2726,32	2520,19	2374,38	2244,53	2128,52	2020,47	1914,84		
NO _x	250,11	250,77	244,33	238,59	233,21	227,87	236,14		
NMVOC	235,63	220,01	208,92	199,16	190,25	181,94	173,77		

Tabela 17 - Fatores de emissão variáveis de automóveis nos anos (kg/TJ) - álcool hidratado

	Transporte Rodoviário / Força Motriz / Álcool hidratado							
Gás/Ano	1990	1991	1992	1993	1994	1995	1996	
CH₄	93,03	92,21	89,92	87,44	86,86	86,68	86,59	
N ₂ O	2,40	2,41	2,40	2,40	2,39	2,39	2,39	
CO	5530,42	5455,56	5300,93	5043,58	5067,21	5043,70	5079,76	
NO _x	518,51	515,58	504,54	482,33	479,78	479,39	479,95	
NMVOC	480,91	475,10	458,88	433,35	434,15	431,27	430,69	
Gás/Ano	1997	1998	1999	2000	2001	2002	2003	
CH₄	86,53	86,45	86,20	85,91	85,49	84,41	83,55	
N ₂ O	2,39	2,39	2,39	2,39	2,39	2,39	2,39	
СО	5073,19	5062,87	5038,52	5011,67	4974,20	4890,60	4819,12	
NO _x	480,59	481,03	480,46	479,78	478,20	472,37	467,80	
NMVOC	430,15	429,17	427,13	425,28	420,53	410,15	404,52	
Gás/Ano	2004	2005	2006	2007	2008	2009	2010	
CH₄	82,30	81,31	80,79	80,23	79,59	78,88	78,09	
N ₂ O	2,39	2,39	2,39	2,39	2,39	2,38	2,38	
СО	4718,11	4634,59	4584,10	4529,83	4470,24	4405,60	4336,06	
NO _x	460,43	454,84	452,50	449,82	446,65	442,95	438,66	
NMVOC	400,36	395,32	391,44	387,49	383,37	379,10	374,73	

Tabela 18 - Fatores de emissão variáveis de automóveis nos anos (kg/TJ) - flex - gasolina C

	Transporte Rodoviário / Força Motriz / Gasolina Automotiva								
Gás/Ano	1990	1991	1992	1993	1994	1995	1996		
CH₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Gás/Ano	1997	1998	1999	2000	2001	2002	2003		
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	5,61		
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	9,43		
CO	0,00	0,00	0,00	0,00	0,00	0,00	239,18		
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	19,64		
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	18,18		
Gás/Ano	2004	2005	2006	2007	2008	2009	2010		
CH ₄	8,66	12,25	12,54	14,18	13,44	13,05	12,81		
N ₂ O	9,80	10,31	10,57	10,62	11,10	11,49	11,72		
СО	211,91	241,89	265,31	283,71	303,88	295,67	290,17		
NO _x	24,85	27,31	28,56	30,39	30,70	29,77	29,80		
NMVOC	27,97	39,25	40,51	46,73	45,69	45,51	45,85		

Tabela 19 - Fatores de emissão variáveis de automóveis nos anos (kg/TJ) - flex - álcool hidratado

	Tra	Transporte Rodoviário / Força Motriz / Álcool hidratado									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996				
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Gás/Ano	1997	1998	1999	2000	2001	2002	2003				
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	12,90				
N ₂ 0	0,00	0,00	0,00	0,00	0,00	0,00	2,26				
CO	0,00	0,00	0,00	0,00	0,00	0,00	155,38				
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	46,08				
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	36,57				
Gás/Ano	2004	2005	2006	2007	2008	2009	2010				
CH ₄	12,74	13,21	12,20	13,42	10,77	9,71	9,08				
N ₂ O	2,07	2,14	2,31	2,43	2,43	2,49	2,52				
CO	150,96	145,82	164,51	173,30	206,29	217,18	223,26				
NO _x	48,67	41,07	36,20	32,12	27,61	24,56	23,81				
NMVOC	36,35	38,20	36,35	39,89	33,19	31,01	30,09				

Tabela 20 - Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) - gasolina C

	Transporte Rodoviário / Força Motriz / Gasolina C									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH₄	163,93	157,70	147,90	136,29	125,94	113,96	100,35			
N ₂ O	1,95	1,96	1,96	1,95	2,94	4,11	5,32			
CO	12047,05	11456,19	10730,65	9871,34	8847,02	7562,54	6401,87			
NO _x	603,01	611,36	588,24	570,58	538,80	492,38	447,08			
NMVOC	945,55	909,30	853,21	786,64	704,75	610,12	516,97			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH ₄	85,98	76,37	70,17	63,76	58,30	54,09	50,17			
N ₂ O	6,26	6,94	7,37	7,82	8,21	8,43	8,64			
CO	5052,83	4604,84	4150,37	3692,34	3308,83	3445,85	2747,33			
NO _x	363,95	362,74	342,48	319,93	298,68	282,34	266,58			
NMVOC	409,69	380,13	345,55	310,29	280,97	291,11	238,10			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH₄	46,72	43,76	41,45	39,30	39,21	39,29	39,91			
N ₂ O	8,84	9,00	9,12	9,25	9,37	9,47	9,57			
СО	2509,36	2310,97	2162,38	2017,27	1852,13	1684,30	1499,70			
NO _x	251,59	248,76	239,24	229,16	214,98	199,15	191,67			
NMVOC	220,07	204,85	193,25	182,21	168,50	154,56	139,19			

Tabela 21 - Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) - álcool hidratado

	Tra	Transporte Rodoviário / Força Motriz / Álcool hidratado									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996				
CH₄	94,42	93,24	89,71	86,52	85,72	85,34	85,13				
N ₂ O	2,40	2,40	2,39	2,40	2,38	2,38	2,38				
CO	5454,90	5349,98	5116,91	4789,86	4792,97	4746,06	4765,24				
NO _x	544,80	539,22	520,53	490,45	488,65	486,68	486,65				
NMVOC	480,91	475,10	458,88	433,35	434,15	431,27	430,69				
Gás/Ano	1997	1998	1999	2000	2001	2002	2003				
CH₄	84,94	84,70	84,31	83,95	83,07	81,21	80,22				
N ₂ O	2,38	2,38	2,38	2,38	2,38	2,37	2,37				
СО	4747,38	4724,15	4688,32	4654,14	4586,68	4455,65	4378,94				
NO _x	486,53	485,98	484,35	482,88	477,97	466,44	460,52				
NMVOC	430,15	429,17	427,13	425,28	420,53	410,15	404,52				
Gás/Ano	2004	2005	2006	2007	2008	2009	2010				
CH ₄	79,52	78,67	78,00	77,32	76,61	75,88	75,12				
N ₂ O	2,37	2,37	2,37	2,37	2,37	2,37	2,37				
СО	4318,99	4249,49	4193,32	4137,03	4079,32	4020,74	3961,77				
NO _x	456,26	450,94	446,94	442,85	438,51	433,96	429,25				
NMVOC	400,36	395,32	391,44	387,49	383,37	379,10	374,73				

Tabela 22 - Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ)-flex-gasolina C

	Tr	Transporte Rodoviário / Força Motriz / Flex - Gasolina C									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996				
CH₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Gás/Ano	1997	1998	1999	2000	2001	2002	2003				
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	5,61				
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	9,43				
CO	0,00	0,00	0,00	0,00	0,00	0,00	239,18				
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	19,64				
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	18,18				
Gás/Ano	2004	2005	2006	2007	2008	2009	2010				
CH ₄	8,82	11,78	12,21	14,35	13,32	12,95	12,69				
N ₂ O	9,82	10,24	10,47	10,58	11,19	11,57	11,83				
СО	209,04	240,90	266,41	281,21	299,59	289,23	278,05				
NO _x	24,95	27,48	29,17	30,33	29,86	28,83	28,42				
NMVOC	28,34	38,12	40,21	47,28	45,01	44,86	44,90				

Tabela 23 - Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) - flex - álcool hidratado

	Transp	Transporte Rodoviário / Força Motriz / Flex - Álcool hidratado								
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	12,90			
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	2,26			
CO	0,00	0,00	0,00	0,00	0,00	0,00	155,38			
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	46,08			
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	36,57			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH ₄	12,75	13,16	11,91	13,14	10,67	9,66	8,97			
N ₂ O	2,08	2,13	2,35	2,44	2,43	2,49	2,52			
СО	152,79	149,65	166,17	175,44	207,30	217,46	174,64			
NO _x	48,59	42,20	35,13	32,27	27,98	24,84	23,70			
NMVOC	36,52	38,29	35,38	39,26	33,06	30,98	29,68			

4.2.2 Deterioração das emissões com o desgaste do veículo

Os fatores de emissão são afetados pelas condições de uso, pelo estado de manutenção e por condições ambientais. Por insuficiência de dados consistentes sobre fatores de emissão para os veículos em condições reais de uso, na elaboração deste inventário são considerados apenas os valores gerados nos ensaios de durabilidade, estabelecidos pelo PROCONVE. Estes ensaios são realizados com o objetivo de verificar se os limites de emissão estabelecidos são respeitados por no mínimo 80.000km, conforme Resolução CONAMA nº.14, de 13 de dezembro de 1995.

Dessa forma, a partir dos valores obtidos nos ensaios de durabilidade e dos fatores de emissão de veículos novos, estimou-se o incremento médio do fator de emissão por acúmulo de rodagem. Em tais estimativas, considerou-se ainda que o incremento tem um comportamento linear, fazendo-se uma extrapolação para quilometragens superiores a 80.000, não cobertas pelos ensaios de durabilidade.

De acordo com MMA (2011), em análise de 200 ensaios de durabilidade realizados entre 2003 e 2007, constatou-se que os incrementos das emissões por acúmulo de rodagem de veículos de diferentes anos de fabricação não apresentavam diferenças significativas. Assim, calculou-se a diferença entre a média aritmética dos fatores de emissão de veículos novos e a média aritmética dos fatores de emissão de veículos com 80.000 km, obtendo-se, logo, os valores de incrementos de emissões por tipo e combustível, conforme apresenta a Tabela 24.

Tabela 24 - Incremento nos fatores de emissão após 80.000 km rodados

	Poluentes (g/80.000 km)						
Combustivel	СО	NO _x	NMVOC				
Gasolina C	0,263	0,030	0,023				
Etanol hidratado	0,224	0,020	0,024				

Fonte: Adaptado do MMA (2011).

Ressalta-se que se adotou o mesmo fator de deterioração de emissões obtidos nos ensaios realizados entre 2003 e 2007 para os veículos fabricados entre 1995 e 2002, dado que não foram realizados os ensaios de acúmulo de rodagem, e considerando-se que as tecnologias adotadas nestes períodos são similares, quais sejam injeção eletrônica e catalisador de 3 vias.

Já para os veículos fabricados anteriormente ao ano de 1995, quando a parcela majoritária dos veículos não era equipada com catalisadores, foi proposto pela CETESB que, para o NO_X , não há deterioração, enquanto que para CO e NMVOC há deterioração linear de 20% em relação ao fator de emissão do veículo novo ao atingir os 160.000 km, permanecendo constante a partir daí.

4.3 Veículos convertidos para o uso de GNV

Segundo a metodologia *top-down* para o uso de GNV, os fatores de emissão em g_{poluente}/m³_{combustível} são aplicados diretamente ao consumo de combustível, de acordo com os dados do BEN (EPE, 2006; 2014).

Os dados utilizados nesse Inventário vêm do MMA (2011). Esses, por sua vez, são fatores médios de emissão, calculados com base nos valores divulgados no Relatório da Qualidade do Ar no Estado de São Paulo 2010 (CETESB, 2011a). A CETESB apresentada dados de fatores de emissão no período 2002-2007, representando, respectivamente, o início da regulamentação do kit conversão de veículos e o declínio desse em função do preço do combustível e da consolidação da tecnologia *flex fuel*. No entanto, há dados no BEN (EPE, 2006; 2013) sobre o consumo de GNV desde 1990. Dessa forma, utilizar os valores da CETESB (2011a) se torna inviável, uma vez que cobre apenas uma pequena parcela do tempo. Assim, nesse Inventário, consideraram-se os fatores de emissão de GNV como a média dos dados apresentados pela CETESB (2011a), que foi calculada pelo MMA (2011), tornando-os homogêneos ao longo de todo o período de análise.

Relativamente ao fator de emissão de CH_4 , o mesmo foi estimado a partir do fator de emissão de THC, considerando-se o valor de 0,895 para a razão CH_4/THC , conforme proposto por Borsari (2005). Para o fator de emissão do N_2O , o dado utilizado foi o proposto por Borsari (2009).

A metodologia para o fator de emissão de NMVOC em consideração somente a emissão de escapamento; ou seja, os valores de $NMHC_{escap}$ do CETESB.

Na tabela a seguir, seguem os valores dos fatores de emissão do GNV em kg/TJ.

Tabela 25 - Fatores de emissão de CH₄, N₂O, CO, NO_x e NMVOC para veículos movidos a GNV.

CH₄	N₂O	CO	NO _x	NMVOC
(kg/TJ)	(kg/TJ)	(kg/TJ)	(kg/TJ)	(kg/TJ)
71,66	10,19	182,41	94,46	8,47

Fonte: Elaboração própria, com base em CETESB (2011a) e Borsari (2005, 2009).

4.4 Motocicletas

Os fatores de emissão para motocicletas foram obtidos do Inventário de Veículos Automotores Rodoviários (MMA, 2011), baseado no Relatório da Qualidade do Ar (CETESB, 2010). Ambos levam em consideração os limites propostos no início Programa de Controle da Poluição do Ar por Motociclos e Veículos Similares (PROMOT). Sendo assim, consideram-se os fatores de emissão em dois grupos. O primeiro refere-se aos fatores de emissão das motos dentro do PROMOT, de 2003 em diante; já o segundo, aos valores para motos antes de 2002. Para o último grupo, foram considerados valores constantes.

Maior detalhamento sobre o PROMOT está no Anexo 8.4.

Especificamente para o fator de emissão do NMVOC, a metodologia é semelhante àquela apresentada no subitem no começo do capítulo, porém, somente foi considerada a emissão de escapamento.

Para o caso do N_2O , o relatório CETESB (2011b) dá o fator de emissão pelo IPCC (1997), considerando-o constante para todo o período de estudo.

Tabela 26 - Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) - gasolina C

	Transporte Rodoviário / Força Motriz / Gasolina C									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH ₄	679,81	1.742,21	1.813,61	1.923,32	1.844,57	1.683,79	1.481,53			
N ₂ O	3,49	8,93	9,30	9,86	9,46	8,63	7,60			
СО	34.339,03	14.703,76	14.872,33	15.128,18	14.830,53	13.523,59	11.999,67			
NO _x	174,31	174,31	174,31	174,31	174,31	174,31	174,31			
NMVOC	3.852,25	3.852,25	3.852,25	3.852,25	3.852,25	3.852,25	3.852,25			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH₄	1.239,83	1.040,09	895,95	752,35	628,60	521,60	438,56			
N ₂ O	6,36	5,33	4,59	3,86	3,22	2,67	2,25			
СО	10.027,90	8.378,36	7.184,81	5.993,90	4.928,91	4.034,87	3.325,50			
NO _x	174,31	174,31	174,31	174,31	174,31	174,31	196,89			
NMVOC	3.852,25	3.852,25	3.852,25	3.852,25	3.852,25	3.852,25	3.428,92			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH₄	366,22	303,55	246,42	195,48	183,16	150,73	133,92			
N ₂ O	1,89	1,57	1,27	1,01	0,95	0,78	0,70			
СО	2.749,10	2.258,55	1.815,40	1.424,19	1.318,00	1.069,95	920,05			
NO _x	215,62	226,01	238,10	245,98	244,73	235,13	242,16			
NMVOC	3.064,35	2.713,12	2.329,34	1.991,06	1.934,40	1.683,74	1.471,41			

Tabela 27 - Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) - flex - gasolina C

	Т	ransporte R	odoviário / l	orça Motriz	. / Flex - G	asolina C	
Gás/Ano	1990	1991	1992	1993	1994	1995	1996
CH₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Gás/Ano	1997	1998	1999	2000	2001	2002	2003
CH₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Gás/Ano	2004	2005	2006	2007	2008	2009	2010
CH₄	0,00	0,00	0,00	0,00	0,00	52,29	52,29
N ₂ O	0,00	0,00	0,00	0,00	0,00	3,49	3,49
CO	0,00	0,00	0,00	0,00	0,00	1.307,32	1.307,32
NO _x	0,00	0,00	0,00	0,00	0,00	261,46	261,46
NMVOC	0,00	0,00	0,00	0,00	0,00	244,03	244,03

Tabela 28 - Fatores de emissão variáveis de motocicletas nos anos (kg/TJ) - flex - álcool hidratado

	Trans	Transporte Rodoviário / Força Motriz / Flex - Álcool hidratado								
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
N ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
CO	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NO _x	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
NMVOC	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH₄	0,00	0,00	0,00	0,00	0,00	35,15	35,15			
N ₂ O	0,00	0,00	0,00	0,00	0,00	2,34	2,34			
CO	0,00	0,00	0,00	0,00	0,00	679,48	679,48			
NO _x	0,00	0,00	0,00	0,00	0,00	187,44	187,44			
NMVOC	0,00	0,00	0,00	0,00	0,00	164,01	164,01			

4.5 Ciclo Diesel

O perfil do uso do diesel na matriz energética brasileira foi alterado de modo considerável a partir de 2004, devido às ações de incentivo do governo brasileiro e ao lançamento do Programa Nacional de Produção e Uso de Biodiesel (PNPB), que promoveu a inserção do biodiesel no setor rodoviário. O Programa estabeleceu a obrigatoriedade de adição de biodiesel ao óleo diesel comercializado ao consumidor nos percentuais de 2% a partir de 1° de janeiro de 2008 e 5% a partir do ano de 2013, sendo o período de 2006 a 2008 de caráter voluntário. Em março de 2008, foi promulgada uma resolução antecipando as metas do programa, de modo que a obrigatoriedade da adoção de 3% de biodiesel passou a valer a partir de 1° julho de 2008, sendo elevada para 5%, a partir de janeiro de 2010.

Desse modo, as emissões de poluentes por parte dos veículos do Ciclo Diesel devem incorporar, além do diesel puro, a participação do biodiesel.

Nos subitens a seguir, estão detalhadas as metodologias de cálculo dos fatores de emissão para ambos os combustíveis

4.5.1 Fatores de emissão para Diesel

Para os motores do Ciclo Diesel, os fatores de emissão foram retirados do Inventário de Veículos Automotores Rodoviários (MMA, 2011), que tem por base o Relatório da Qualidade do Ar no Estado de São Paulo (CETESB, 2011a). Eles são determinados através da classificação das fases pesadas do Programa de Controle da Poluição do Ar por Veículos Automotores (PROCONVE). Maior detalhamento sobre o PROCONVE está no Anexo 8.4. Para o cálculo dos fatores de emissão de N₂O, foram utilizados dados da CETESB (2011b); para o CH₄, foram considerados os fatores de emissão default do IPCC (1997); os demais gases consideraram os fatores de emissão disponibilizados pela CETESB (2011a).

Para este o período temporal deste Inventário, as fases consideradas são desde a pré-PROCONVE até a P5. De acordo com o cronograma do PROCONVE, a fase P6 deveria ter sido imposta em 2009, contudo houve, em 2008, uma sucessão de eventos que levaram à impossibilidade de sua implantação. Logo, para os anos 2009 e 2010, os fatores de emissão serão os mesmos da fase P5.

No relatório da CETESB, os fatores de emissão são medidos em termos da massa do poluente gerado por unidade de trabalho, expressos em g_{poluente}/kWh. O 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (MMA, 2011) converteu tais valores para g/km, separando-os de acordo com cada categoria de veículo pesado - comerciais leves, caminhões leves, médios e pesados e ônibus urbanos e rodoviários - e pelas fases do PROCONVE. Neste Inventário, utilizou-se os dados da CETESB (2011a,b) em g/km para converter para kg/TJ.

Faz-se importante destacar que os fatores de emissão de veículos novos foram levantados utilizando-se o combustível de referência do momento da realização dos ensaios de homologação.

No entanto, veículos em uso utilizam o combustível comercial que pode conter um teor de enxofre diferente daquele presente no diesel de referência. Esse teor influencia nas emissões de material particulado (MP), o que faz com que seja necessário um ajuste em suas emissões estimadas. Contudo, este Inventário não considera tal poluente, e nenhum ajuste em relação ao enxofre, portanto, não foi realizado.

Da mesma forma que para veículos de Ciclo Otto, todos os fatores devem ser ponderados pelo número de veículos de cada ano de licenciamento em circulação no ano para o qual se calculam as emissões, obtendo-se os fatores efetivos para representar o estado de emissão da frota. Observa-se que, embora os fatores para veículos novos de cada ano possam ser iguais para as frotas de um mesmo combustível, os fatores para os veículos em circulação são diferenciados pela composição da frota circulante.

Nenhum incremento por acúmulo de rodagem foi considerado, uma vez que não foram encontradas informações sobre mesmo relativamente ao Ciclo Diesel.

Nas tabelas a seguir são apresentados os fatores de emissão efetivos por cada categoria de veículos Ciclo Diesel e pelas fases do PROCONVE.

Tabela 29 - Fatores de emissão variáveis de comerciais leves nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH₄	1,28	1,28	1,28	1,28	1,28	1,28	1,28			
N ₂ 0	5,12	5,12	5,12	5,12	5,12	5,12	5,12			
CO	197,05	197,05	197,05	197,05	197,05	197,05	197,05			
NO _x	1.123,45	1.123,45	1.123,45	1.123,45	1.123,45	1.123,45	1.123,45			
NMVOC	69,10	69,10	69,10	69,10	69,10	69,10	69,10			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH₄	1,28	1,28	1,28	1,28	1,28	1,28	1,28			
N ₂ 0	5,12	5,12	5,12	5,12	5,12	5,12	5,12			
СО	194,60	192,52	191,06	189,36	187,97	186,94	186,09			
NO _x	1.123,45	1.123,45	1.123,45	1.076,83	1.040,44	1.012,90	990,68			
NMVOC	69,10	69,10	69,10	67,94	67,03	64,22	62,10			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH₄	1,28	1,28	1,28	1,28	1,28	1,28	1,28			
N ₂ 0	5,12	5,12	5,12	5,12	5,12	5,12	5,12			
СО	185,18	177,44	170,36	163,34	155,25	147,08	138,68			
NO _x	957,38	932,41	908,19	884,55	858,38	808,32	751,83			
NMVOC	59,10	55,97	52,97	50,02	46,67	44,50	44,14			

Tabela 30 - Fatores de emissão variáveis de ônibus urbano nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel									
Gás/Ano	1990	1991	1992	1993	1994	1995	1996			
CH₄	3,89	3,89	3,89	3,89	3,89	3,89	3,89			
N ₂ 0	1,94	1,94	1,94	1,94	1,94	1,94	1,94			
CO	198,14	198,14	198,14	198,14	198,14	198,14	198,14			
NO _x	1.124,75	1.124,75	1.124,75	1.124,75	1.124,75	1.124,75	1.124,75			
NMVOC	71,49	71,49	71,49	71,49	71,49	71,28	71,49			
Gás/Ano	1997	1998	1999	2000	2001	2002	2003			
CH ₄	3,89	3,89	3,89	3,89	3,89	3,89	3,89			
N ₂ 0	1,94	1,94	1,94	1,94	1,94	1,94	1,94			
СО	197,03	195,89	195,13	194,08	192,74	191,75	190,48			
NO _x	1.124,75	1.124,75	1.124,75	1.101,07	1.070,67	1.047,73	1.017,37			
NMVOC	71,49	71,49	71,49	70,75	69,81	67,60	64,72			
Gás/Ano	2004	2005	2006	2007	2008	2009	2010			
CH₄	3,89	3,89	3,89	3,89	3,89	3,89	3,89			
N ₂ 0	1,94	1,94	1,94	1,94	1,94	1,94	1,94			
СО	189,41	182,98	175,85	167,99	160,00	153,28	145,88			
NO _x	983,91	953,73	919,83	883,23	846,59	803,18	756,28			
NMVOC	61,74	59,05	56,01	52,70	49,36	45,97	42,61			

Tabela 31 - Fatores de emissão variáveis de ônibus rodoviário nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel							
Gás/Ano	1990	1991	1992	1993	1994	1995	1996	
CH₄	5,12	5,12	5,12	5,12	5,12	5,12	5,12	
N ₂ O	1,71	1,71	1,71	1,71	1,71	1,71	1,71	
CO	197,91	197,91	197,91	197,91	197,91	197,91	197,91	
NO _x	1.124,31	1.124,31	1.124,31	1.124,31	1.124,31	1.124,31	1.124,31	
NMVOC	71,48	71,48	71,48	71,48	71,48	71,26	71,48	
Gás/Ano	1997	1998	1999	2000	2001	2002	2003	
CH₄	5,12	5,12	5,12	5,12	5,12	5,12	5,12	
N ₂ O	1,71	1,71	1,71	1,71	1,71	1,71	1,71	
CO	195,41	193,38	192,09	190,15	189,73	189,42	189,02	
NO _x	1.124,31	1.124,31	1.124,31	1.070,94	1.061,36	1.054,95	1.045,94	
NMVOC	71,48	71,48	71,48	70,11	69,86	69,27	68,45	
Gás/Ano	2004	2005	2006	2007	2008	2009	2010	
CH₄	5,12	5,12	5,12	5,12	5,12	5,12	5,12	
N ₂ O	1,71	1,71	1,71	1,71	1,71	1,71	1,71	
СО	188,52	184,37	180,94	176,24	172,32	168,91	164,81	
NO _x	1.030,00	1.009,06	991,08	966,99	946,69	926,13	901,76	
NMVOC	67,03	65,13	63,51	61,31	59,47	57,62	55,50	

Tabela 32 - Fatores de emissão variáveis de caminhões leves nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel							
Gás/Ano	1990	1991	1992	1993	1994	1995	1996	
CH ₄	12,85	12,85	12,85	12,85	12,85	12,85	12,85	
N ₂ 0	6,43	6,43	6,43	6,43	6,43	6,43	6,43	
CO	197,11	197,11	197,11	197,11	197,11	197,11	197,11	
NO _x	1.538,28	1.538,28	1.538,28	1.538,28	1.538,28	1.538,28	1.538,28	
NMVOC	97,91	97,91	97,91	97,91	97,91	96,91	97,91	
Gás/Ano	1997	1998	1999	2000	2001	2002	2003	
CH ₄	12,85	12,85	12,85	12,85	12,85	12,85	12,85	
N ₂ 0	6,43	6,43	6,43	6,43	6,43	6,43	6,43	
CO	196,58	196,13	195,57	194,93	193,92	193,16	192,48	
NO _x	1.538,28	1.538,28	1.538,28	1.517,35	1.486,33	1.461,91	1.440,43	
NMVOC	97,91	97,91	97,91	97,26	96,30	93,84	91,86	
Gás/Ano	2004	2005	2006	2007	2008	2009	2010	
CH ₄	12,85	12,85	12,85	12,85	12,85	12,85	12,85	
N ₂ 0	6,43	6,43	6,43	6,43	6,43	6,43	6,43	
CO	191,71	186,70	182,50	178,16	174,19	168,76	162,36	
NO _x	1.408,10	1.376,19	1.346,96	1.317,00	1.289,50	1.248,74	1.201,67	
NMVOC	89,03	86,21	83,63	80,98	78,55	74,97	69,01	

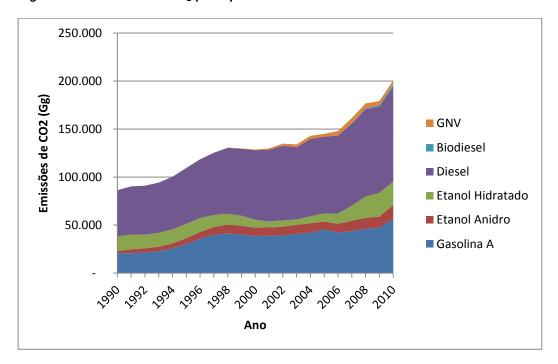
Tabela 33 - Fatores de emissão variáveis de caminhões médios nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel							
Gás/Ano	1990	1991	1992	1993	1994	1995	1996	
CH ₄	9,39	9,39	9,39	9,39	9,39	9,39	9,39	
N ₂ 0	4,70	4,70	4,70	4,70	4,70	4,70	4,70	
CO	197,23	197,23	197,23	197,23	197,23	197,23	197,23	
NO _x	1.125,46	1.125,46	1.125,46	1.125,46	1.125,46	1.125,46	1.125,46	
NMVOC	71,53	71,53	71,53	71,53	71,53	72,96	71,53	
Gás/Ano	1997	1998	1999	2000	2001	2002	2003	
CH ₄	9,39	9,39	9,39	9,39	9,39	9,39	9,39	
N ₂ 0	4,70	4,70	4,70	4,70	4,70	4,70	4,70	
СО	195,84	194,66	193,74	192,59	191,48	190,49	189,55	
NO _x	1.125,46	1.125,46	1.125,46	1.093,81	1.065,46	1.038,77	1.013,75	
NMVOC	71,53	71,53	71,53	70,56	69,68	66,91	64,49	
Gás/Ano	2004	2005	2006	2007	2008	2009	2010	
CH ₄	9,39	9,39	9,39	9,39	9,39	9,39	9,39	
N ₂ 0	4,70	4,70	4,70	4,70	4,70	4,70	4,70	
СО	188,55	180,85	175,03	168,04	160,30	153,80	145,64	
NO _x	976,75	944,52	917,56	885,81	851,21	815,90	772,81	
NMVOC	61,15	58,23	55,78	52,89	49,72	46,07	42,03	

Tabela 34 - Fatores de emissão variáveis de caminhões pesados nos anos (kg/TJ) - diesel

	Transporte Rodoviário / Força Motriz / Diesel							
Gás/Ano	1990	1991	1992	1993	1994	1995	1996	
CH₄	5,35	5,35	5,35	5,35	5,35	5,35	5,35	
N ₂ O	2,68	2,68	2,68	2,68	2,68	2,68	2,68	
CO	197,23	197,23	197,23	197,23	197,23	197,23	197,23	
NO _x	1.033,46	1.033,46	1.033,46	1.033,46	1.033,46	1.033,46	1.033,46	
NMVOC	65,68	65,68	65,68	65,68	65,68	65,89	65,68	
Gás/Ano	1997	1998	1999	2000	2001	2002	2003	
CH₄	5,35	5,35	5,35	5,35	5,35	5,35	5,35	
N ₂ O	2,68	2,68	2,68	2,68	2,68	2,68	2,68	
СО	195,40	194,14	193,18	191,84	190,99	190,20	189,25	
NO _x	1.033,46	1.033,46	1.033,46	999,89	980,52	961,83	938,69	
NMVOC	65,68	65,68	65,68	64,64	64,03	62,10	59,85	
Gás/Ano	2004	2005	2006	2007	2008	2009	2010	
CH ₄	5,35	5,35	5,35	5,35	5,35	5,35	5,35	
N ₂ O	2,68	2,68	2,68	2,68	2,68	2,68	2,68	
СО	188,09	181,03	175,34	167,70	159,53	153,30	144,34	
NO _x	900,23	873,64	849,53	817,86	784,33	753,81	711,29	
NMVOC	56,37	53,96	51,77	48,88	45,81	42,38	38,34	

4.5.2 Fatores de emissão para biodiesel


De acordo com IPCC (2006), os fatores de emissão de biodiesel são iguais aos de diesel para todos os gases.

5 Resultados

As emissões por tipo de gás, por combustível e por categoria de veículos são apresentadas em gráficos na seção a seguir e em tabelas no Anexo 8.7.

5.1 Emissões detalhadas

Figura 17 - Emissões de CO₂ por tipo de combustível

250.000 ■ GNV 200.000 ■ Caminhões Pesados ■ Caminhões Médios 150.000 ■ Caminhões Leves ■ Ônibus Regionais 100.000 ■ Ônibus Urbanos ■ Motocicletas 50.000 ■ Comerciais Leves - Diesel ■ Comerciais Leves - Otto Automóveis

Figura 18 - Emissões de CO₂ por tipo de veículo

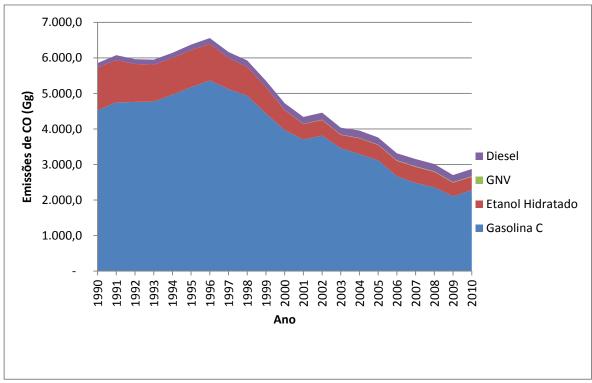
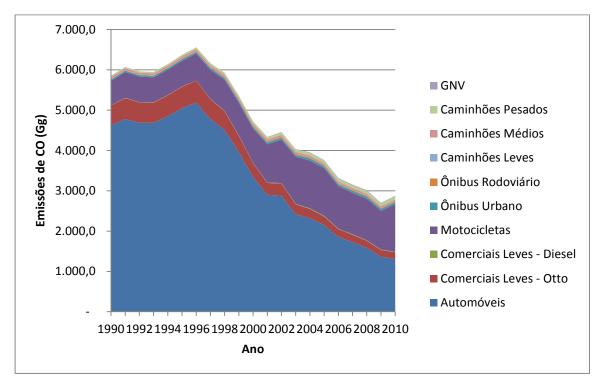



Figura 20 - Emissões de CO por tipo de veículo

100,0 90,0 80,0 70,0 Emissões de CH4 (gG) 60,0 Diesel 50,0 GNV 40,0 ■ Álcool hidratado 30,0 ■ Gasolina C 20,0 10,0 0,0 1993 1993 1994 1995 1996 1997 1998 2000 2001 2002 2003 2005 2005 2005 2005 2006 2007 2008 2009 2009 Ano

Figura 21 - Emissões de CH₄ por tipo de combustível

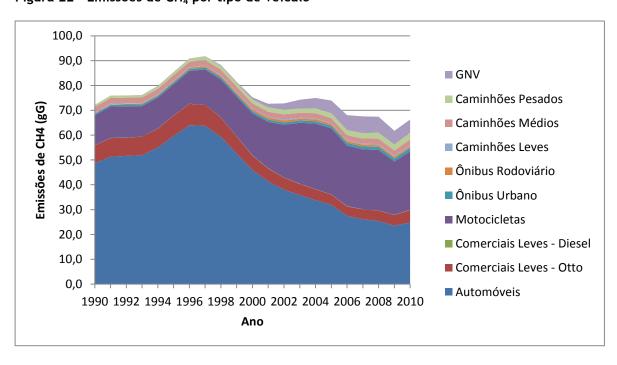


Figura 22 - Emissões de CH₄ por tipo de veículo

1.600,0 1.400,0 1.200,0 1.000,0 400,0 200,0 200,0 200,0 200,0 300,0 400,0 200,0 400,0 500,0 6

Figura 23 - Emissões de NO_X por tipo de combustível

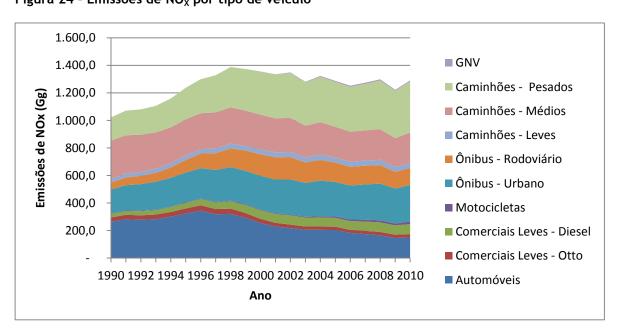


Figura 24 - Emissões de NO_X por tipo de veículo

Figura 25 - Emissões de NMVOC por tipo de combustível

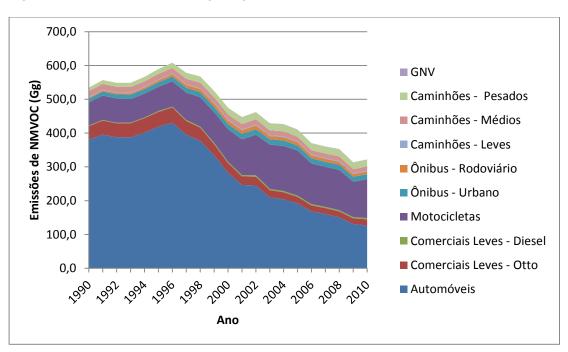


Figura 26 - Emissões de NMVOC por tipo de veículo

Figura 27 - Emissões de N_2O por tipo de combustível

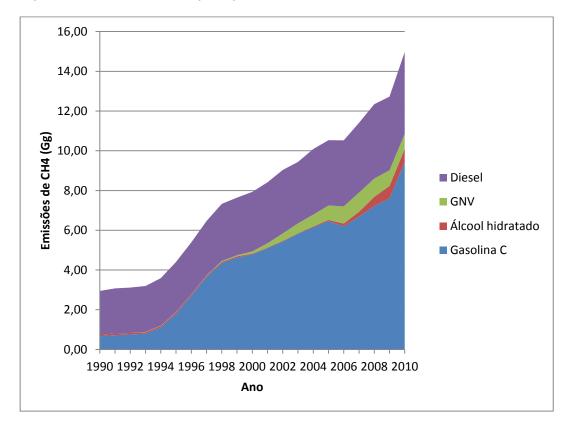
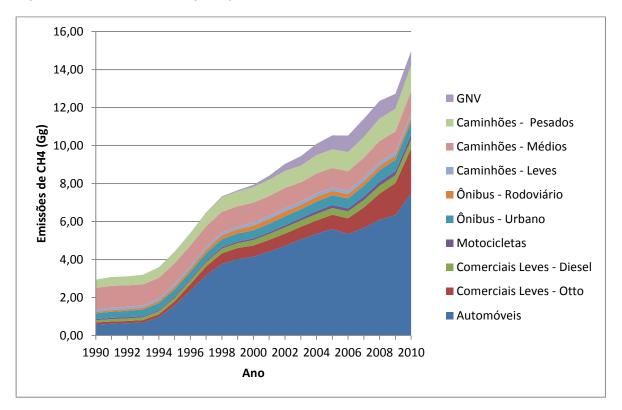



Figura 28 - Emissões de N_2O por tipo de veículo

6 Análises e Recomendações

Durante a elaboração deste Inventário, foram levantadas diversas questões quanto à sua estrutura, ao seu conteúdo e aos dados, de tal modo a se obter um documento final com resultados consistentes e mais próximos possíveis da realidade.

Deve-se levar em consideração especialmente a questão dos dados, pois se observaram diversas lacunas significativas nas informações disponíveis no país. Tal fato demandou a adoção de algumas premissas e simplificações. No entanto, houve melhorias, tanto do ponto de vista da utilização dos dados quanto à metodologia, principalmente em comparação ao Primeiro e ao Segundo Inventários Nacionais, e convém destacá-las.

Este item, então, reserva-se a fazer uma breve análise sobre as diferenças introduzidas neste inventário em relação aos anteriores e a apresentar recomendações para seu aprimoramento.

6.1 Diferenças em relação ao inventário anterior

As maiores diferenças em relação ao Segundo Inventário Nacional estão na caracterização da frota de veículos com o acréscimo das motocicletas e a desagregação dos ônibus em urbanos e rodoviários e dos caminhões em leves, médios e pesados. Para a estimação da frota, manteve-se a curva logística utilizada anteriormente, adicionando a curva de sucateamento utilizada pelo SINDIPEÇAS (2009) para as motos.

Houve mudança também no cálculo de consumo de combustível, adotando-se aqui a equação utilizada pelo MMA (2011), que leva em consideração a intensidade de uso e a quilometragem por litro, duas variáveis não consideradas no Segundo Inventário. Consequentemente, foi adicionado um método de correção para o ajuste entre os valores de consumo deste Inventário e do Balanço Energético Nacional.

Quanto aos combustíveis, acrescentaram-se o GNV nos automóveis e nos veículos comerciais leves e o biodiesel nos veículos do Ciclo Diesel, incorporando, também, metodologias para estimação de consumo, fatores de emissão e emissões.

Os dados para veículos novos do Segundo Inventário Nacional vieram do PROCONVE, CORINAIR e IPCC, enquanto que este considerou relatórios da CETESB e alguns cálculos do 1° e 2° Inventários do MMA. Para veículos antigos, considerou-se, além da ponderação pela frota já realizada no Segundo Inventário, a deterioração dos veículos, com acréscimos aos fatores de emissão para alguns poluentes de acordo com seu uso.

Como consequência, tais alterações nos fatores de emissão levaram a diferenças nas emissões. As figuras a seguir apresentam os resultados das emissões nos dois primeiros inventários nacionais, bem como no Primeiro Inventário do Transporte Rodoviário realizado pelo MMA (2011).

Figura 29 - Comparação entre as Emissões dos Inventários - CO₂

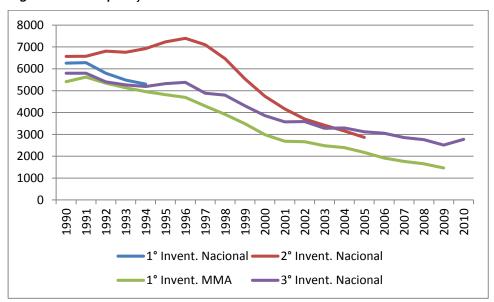


Figura 30 - Comparação entre as Emissões dos Inventários - CO

Figura 31 - Comparação entre as Emissões dos Inventários - NMVOC

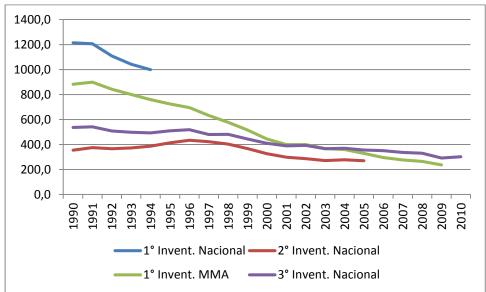
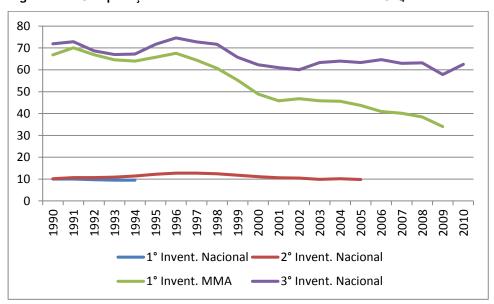



Figura 32 - Comparação entre as Emissões dos Inventários - CH₄

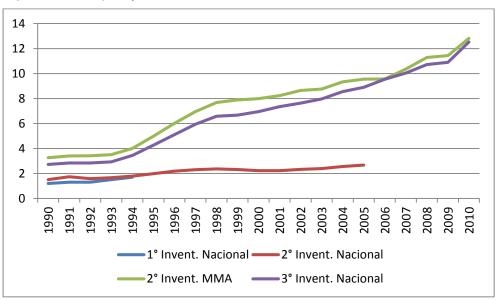


Figura 33 - Comparação entre as Emissões dos Inventários - N2O

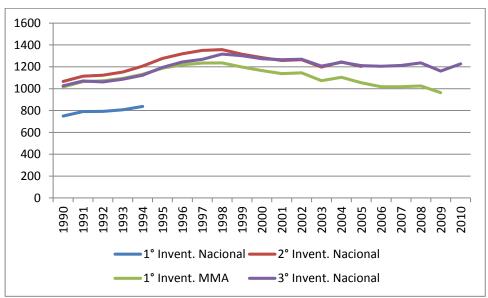


Figura 34 - Comparação entre as Emissões dos Inventários - NO_x

Fonte: Elaboração própria.

6.2 Recomendações para melhorias

Devido à grande diversidade de tipos, idades e condições operacionais dos veículos, informações importantes como fatores de emissão, intensidade de uso de veículos, composição e tamanho da frota podem apresentar um grau de incerteza significativo, o que pode impactar nos resultados das emissões. Logo, as recomendações giram em torno desses pontos.

A estimativa da frota nacional é baseada em curvas de sucateamento fundamentalmente teóricas e sua calibração deve ser acurada. De acordo com o 1º Inventário do MMA, as condições ideais para calibração devem ser feitas comparando-se os dados de frota registrada com os dados de veículos novos licenciados anualmente pelos DETRAN. O que ainda acontece é que os dados oficiais superestimam o número de veículos em circulação, distorções causadas seja por dupla contagem, seja por veículos cujas licenças já tenham sido expiradas, mas que continuam em circulação.

No caso do GNV, a ausência de informações impossibilitou uma análise *bottom-up*. Além disso, mesmo na abordagem *top-down*, houve simplificações. Não se dispõem de dados consistentes e detalhados acerca do consumo do combustível, especialmente contabilizando o quanto o uso de GNV implicou na não utilização de outros combustíveis, e sobre a frota convertida, como número de conversões anuais. Os fatores de emissões disponíveis consideram uma faixa de tempo muito restrita, não levando em conta todo o período de estudo. Por isso, teve de ser feita uma média dos valores e, mais ainda, considerar a premissa de que eles são constantes. Logo, é de suma importância aperfeiçoar as informações quanto a esse combustível.

No caso do biodiesel, a questão primordial se refere aos fatores de emissão. O único dado que foi obtido para o fator de emissão do consumo de biodiesel pelo Terceiro Inventário foi o fator de emissão de CO₂, que por sua vez foi considerado como igual ao do diesel mineral (MMA, 2014). Logo, recomenda-se a elaboração de estudos futuros sobre o biodiesel para aprimoramento de seus fatores de emissão.

Quanto ao consumo de combustível, há críticas para a quilometragem por litro e para a intensidade de uso. Ambas as variáveis deveriam considerar os tipos de tecnologias entre os tipos de veículo e dentro de um próprio tipo de veículo. Os dados de quilometragem por litro consideram valores constantes ao longo de todo o período de estudo para motocicletas e veículos do Ciclo Diesel, o que é bastante simples. A eficiência do GNV também é apresentada com um valor único. Os dados de intensidade de uso, por sua vez, apresentam valores referentes aos anos de uso, o que dificulta o cálculo do consumo de combustível, feito por ano. É necessário adaptar a utilização dessa variável nesse tipo de metodologia.

Para o aprimoramento do inventário, os fatores de emissão devem levar em conta aspectos diversos e detalhados, como o tipo de veículo, tecnologia de controle de emissão, caracterização do combustível utilizado e condições de condução, manutenção, climáticas e meteorológicas. Assim como no caso da frota, os dados disponíveis não consideram todas as variáveis citadas, e é recomendada a elaboração de estudos que permitam conhecer os fatores de emissão em suas condições reais de uso.

Outro detalhe é quanto ao acréscimo nos fatores de deterioração de emissão pelo acúmulo de rodagem. Neste Inventário, foi considerado apenas tal acréscimo em alguns veículos e o próprio cálculo do acréscimo leva em consideração valores médios. Recomenda-se um estudo mais profundo sobre esse tema para todo o setor de transporte rodoviário e como aplicá-lo em um inventário.

Em suma, são necessários estudos específicos e outras atividades futuras que levem à obtenção de dados cada vez mais confiáveis, de modo a reduzir cada vez mais as incertezas nos cálculos.

Referências Bibliográficas

Associação Brasileira dos Fabricantes de Motocicletas - ABRACICLO, Ciclomotores, Motonetas, Bicicletas e Similares, 2014. Disponível em: http://www.abraciclo.com.br/dados-do-setor>.

Associação Nacional dos Fabricantes de Veículos Automotores - ANFAVEA. Anuário da Indústria

Automobilística Brasileira, 2014.
BEN - Balanço Energético Nacional, EPE/MME, 2013.
Borsari, V. <i>As Emissões Veiculares e os Gases de Efeito Estufa</i> . Society for Automotive Engineers. São Paulo: CETESB, 2005.
Caracterização das emissões de gases de efeito estufa por veículos automotores leves no Estado de São Paulo, 2009. 189p. Dissertação (Mestrado em Saúde Pública) - Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, 2009.
Companhia Ambiental do Estado de São Paulo - CETESB. <i>Relatório da Qualidade do Ar no Estado de</i> São Paulo. São Paulo, 2011a.
1º Relatório de Referência do Estado de São Paulo de Emissões e Remoções Antrópicas de Gases de Efeito Estufa, Período de 1990 a 2008. São Paulo, 2011b.
Emissões Veiculares no Estado de São Paulo 2012. São Paulo, 2013.
Economia e Energia, 1999. <i>Frota de Veículos Diesel no Transporte Rodoviário</i> . Disponível em: < <u>http://ecen.com</u> >, nº 16.
Empresa de Pesquisa Energética - EPE. Avaliação do comportamento dos usuários de veículos Flex Fuel no consumo de combustíveis no Brasil. NT-01-013, 2013.
GOLDEMBERG, J.; NIGRO, F. E.B.; COELHO, S. T. Bioenergia no estado de São Paulo: situação atual, perspectivas, barreiras e propostas. São Paulo: Imprensa Oficial do Estado de São Paulo, 2008.
Intergovernamental Panel on Climate Change - IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2. Chapter 3, 2006.
IPCC Revised Guidelines for National Greenhouse Gas Inventories 1996: Reference Manual, 1997.
IPCC Good Practice Guidance and Uncertainty Management National Greenhouse Gas

ministerio a	ia Agricui	tura, Pe	ecuaria e	Abastecime	suto - w	MPA. MISTUR	a Carburante	(Etanol
Anidro/Gaso	olina)	-	Cronologic	a. Bra	asília,	2011.	Disponível	em:
<http: td="" www<=""><td>w.agricultı</td><td>ıra.gov.l</td><td>or/arq_edit</td><td>or/file/Des</td><td>envolvime</td><td>ento_Sustenta</td><td>avel/Agroenerg</td><td>gia/Orie</td></http:>	w.agricultı	ıra.gov.l	or/arq_edit	or/file/Des	envolvime	ento_Sustenta	avel/Agroenerg	gia/Orie
ntacoes_Tec	nicas/01-A	Mistura%2	20etanol%20	Danidro-gas	olina-			
CRONOLOGIA	A(Atualiz_(02_09_20)11).pdf>					
Ministério da	a Ciência e	Tecnolo	gia - MCT.	Segundo In	ventário E	Brasileiro de l	Emissões Antro	picas de
Gases de Efe	eito Estufo	ı - Relat	tório de Rej	ferência -	Emissões	de Gases de	Efeito Estufa	no Setor
Energético p	or Fontes	Móveis.	Brasília, 20	10.				
	Polatório :	da Bafar	ância Emi	ssãos por (lucima de	Combustívoi	is Abordagom	hattam
<i>'</i>	κειαιοπο ι	ле кејег	encia - Eini	ssoes por c	juenna ae	Combustive	s, Abordagem	DOLLOIII-
up. Brasília:	Segunda C	Comunica	ação Nacion	al, 2010.				
Ministério de	e Meio Aml	oiente -	MMA. 1º Inv	ventário Na	cional de	Emissões Atn	nosféricas por	Veículos
Automotores							,	
·	2º Inven	tário N	acional de	e Emissões	Atmosf	éricas por	Veículos Auto	motores
Rodoviários.	Brasília, 2	.014.						

8 Anexos

8.1 LEAP - Long-range Energy Alternative System

O Long-range Energy Alternatives Planning System (LEAP) é um modelo desenvolvido pelo Stockholm Environment Institute (SEI) e possui mais de 17.000 usuários em todo o mundo, distribuídos em mais de 190 países. A Fundación Bariloche é o ponto focal do modelo LEAP na América Latina e Caribe. O objetivo do LEAP é possibilitar o desenvolvimento de estudos de planejamento energético integrado, tendo inúmeras aplicações, como elaboração de inventários e de cenários.

O LEAP é um modelo *bottom-up* de simulação energético-ambiental baseado em cenários (*demand-driven*): frente a um determinado cenário de demanda final de energia, ele calcula os fluxos energéticos entre as distintas tecnologias de abastecimento energético, o uso dos recursos, impactos ambientais e detecta necessidades de ampliação dos processos de produção de energia, assim como os custos associados. A mesma lógica é considerada para o caso de utilizar o modelo LEAP para a realização de um Inventário, na medida em que o ano-base do modelo é considerado o ano inicial do inventário, neste caso 1990, e o ano final o ano 2010.

Destaca-se que neste Inventário, o modelo LEAP foi utilizado para realizar o cálculo do consumo de combustíveis por tipo de veículo no período 1990-2010. Para tanto, é necessário inserir os seguintes dados no modelo, por tipo de veículo e combustível: histórico de licenciamentos, curvas de sucateamento, valores de intensidade de uso e eficiência energética. Como resultado, tem-se o consumo de combustível, bem como a evolução da frota, por tipo de veículo e por combustível.

Dentre as vantagens do LEAP pode-se destacar a flexível estrutura de manipulação de dados e definição de processos, permitindo uma análise ampla com relação às especificações tecnológicas e detalhes de demandas de uso final. Além disso, permite ao usuário passar rapidamente da implantação de políticas à análise de seus efeitos, sem ter que utilizar modelagens complexas e analisar os impactos de mudanças estruturais.

8.2 Evolução da frota estimada por tipo de Ciclo, veículo e combustível

Tabela 35 - Evolução da frota estimada por veículos do Ciclo Otto

	I	Automóveis		Veículo	s Comerciai	s Leves	Motocio	cletas
Ano	Gasolina C	Etanol hidratado	Flex fluel	Gasolina C	Etanol hidratado	Flex fuel	Gasolina C	Flex fuel
1990	7.036.940	3902019	0	797.109	437.723	0	1.881.377	0
1991	7.230.296	3968126	0	814.939	444.427	0	1.916.855	0
1992	7.387.267	4074106	0	826.587	458.595	0	1.902.683	0
1993	7.578.817	4271671	0	845.072	478.214	0	1.866.517	0
1994	8.037.674	4435199	0	889.145	491.710	0	1.865.791	0
1995	8.871.492	4444276	0	978.858	489.849	0	1.927.824	0
1996	9.878.346	4387496	0	1.115.915	476.638	0	2.057.462	0
1997	10.967.614	4303049	0	1.274.544	458.503	0	2.281.403	0
1998	11.948.030	4203701	0	1.408.839	438.521	0	2.583.524	0
1999	12.639.759	4095723	0	1.488.914	417.739	0	2.887.534	0
2000	13.304.441	3977912	0	1.554.137	396.029	0	3.235.055	0
2001	14.099.627	3848711	0	1.622.414	374.592	0	3.689.490	0
2002	14.895.033	3718948	0	1.670.029	356.287	0	4.230.475	0
2003	15.569.585	3609617	19.548	1.706.201	337.203	4.542	4.823.497	0
2004	16.133.403	3475146	177.773	1.738.377	314.559	33.263	5.448.462	0
2005	16.473.764	3304958	676.169	1.756.390	291.243	96.400	6.132.217	0
2006	16.457.512	3120550	1.672.847	1.748.766	267.848	200.069	6.960.605	0
2007	16.224.577	2914846	3.186.607	1.725.994	244.474	364.236	8.034.167	0
2008	15.913.455	2705285	5.071.507	1.716.638	221.896	584.835	8.512.489	0
2009	15.550.175	2494804	7.229.013	1.726.861	200.377	837.266	8.888.355	189.504
2010	15.169.291	2286111	9.593.360	1.762.275	180.061	1.133.591	9.859.866	531.206

Tabela 36 - Evolução da frota estimada por veículos do Ciclo Diesel

	Veículos	Ôı	nibus		Caminhõe	S
Ano	Comerciais Leves	Urbano	Rodoviário	Leves	Médios	Pesados
1990	306.257	129.309	17.657	262.492	689.442	127.616
1991	331.383	134.323	19.170	269.467	683.229	132.574
1992	352.064	140.787	20.417	274.383	672.335	136.688
1993	380.094	145.182	21.861	277.464	659.620	143.024
1994	420.573	146.717	24.887	282.279	649.992	150.949
1995	460.155	148.693	28.956	288.679	644.456	161.052
1996	490.169	151.730	32.402	292.582	637.454	170.610
1997	527.705	154.513	35.553	295.612	629.968	179.976
1998	578.244	158.144	39.042	299.057	624.380	189.629
1999	622.287	160.354	41.919	303.324	617.153	196.822
2000	668.592	162.333	45.534	309.675	611.316	205.844
2001	720.597	167.606	47.913	322.738	608.646	214.560
2002	761.294	172.958	47.669	337.461	606.670	220.622
2003	788.119	178.983	47.203	348.159	604.970	228.273
2004	814.576	186.309	47.042	359.218	606.299	240.905
2005	849.721	192.546	47.321	372.111	610.016	253.898
2006	890.456	200.089	47.659	384.437	612.679	264.593
2007	936.052	211.169	48.186	398.241	619.149	279.538
2008	999.670	226.012	48.808	414.769	635.474	302.231
2009	1.079.974	240.648	48.936	432.494	654.219	324.743
2010	1.180.577	256.591	48.980	455.828	682.781	355.613

8.3 Licenciamentos anuais de veículos novos por tipo de ciclo

Tabela 37 - Licenciamentos anuais de veículos novos Ciclo Otto por tipo de combustível (em mil veículos)

		Automóveis		Veículo	s Comerciai	s Leves	Motoci	cletas
Ano	Gasolina C	Etanol hidratado	Flex fuel	Gasolina C	Etanol hidratado	Flex fuel	Gasolina C	Flex fuel
1957	1,17	0,00	0,00	9,84	0,00	0,00	0,00	0,00
1958	3,68	0,00	0,00	26,53	0,00	0,00	0,00	0,00
1959	14,37	0,00	0,00	41,52	0,00	0,00	0,00	0,00
1960	40,98	0,00	0,00	48,21	0,00	0,00	0,00	0,00
1961	60,13	0,00	0,00	55,32	0,00	0,00	0,00	0,00
1962	83,54	0,00	0,00	66,53	0,00	0,00	0,00	0,00
1963	94,62	0,00	0,00	53,70	0,00	0,00	0,00	0,00
1964	103,43	0,00	0,00	51,46	0,00	0,00	0,00	0,00
1965	114,88	0,00	0,00	46,79	0,00	0,00	0,00	0,00
1966	127,87	0,00	0,00	58,67	0,00	0,00	0,00	0,00
1967	139,21	0,00	0,00	54,66	0,00	0,00	0,00	0,00
1968	164,34	0,00	0,00	65,89	0,00	0,00	0,00	0,00
1969	241,54	0,00	0,00	61,98	0,00	0,00	0,00	0,00
1970	308,02	0,00	0,00	65,80	0,00	0,00	0,00	0,00
1971	395,27	0,00	0,00	71,87	0,00	0,00	0,00	0,00
1972	457,12	0,00	0,00	89,14	0,00	0,00	0,00	0,00
1973	557,69	0,00	0,00	105,75	0,00	0,00	0,00	0,00
1974	639,67	0,00	0,00	116,28	0,00	0,00	0,00	0,00
1975	661,33	0,00	0,00	117,59	0,00	0,00	5,22	0,00
1976	695,21	0,00	0,00	113,52	0,00	0,00	12,80	0,00
1977	678,82	0,00	0,00	69,25	0,00	0,00	32,79	0,00
1978	797,94	0,00	0,00	79,35	0,00	0,00	41,49	0,00
1979	826,46	2,27	0,00	79,24	0,84	0,00	63,64	0,00
1980	566,68	226,35	0,00	59,79	14,29	0,00	125,00	0,00
1981	318,93	128,68	0,00	25,54	7,56	0,00	155,57	0,00
1982	344,47	211,76	0,00	20,97	20,81	0,00	215,77	0,00
1983	70,10	538,40	0,00	8,52	40,93	0,00	219,00	0,00
1984	28,67	503,57	0,00	4,91	61,87	0,00	180,00	0,00
1985	23,89	578,18	0,00	4,76	67,37	0,00	161,38	0,00
1986	53,09	619,29	0,00	8,82	77,76	0,00	166,99	0,00
1987	23,08	387,18	0,00	8,29	71,51	0,00	181,50	0,00
1988	64,73	492,01	0,00	12,58	74,47	0,00	166,99	0,00
1989	220,98	345,60	0,00	39,84	53,93	0,00	167,43	0,00
1990	462,59	70,32	0,00	80,27	11,75	0,00	146,74	0,00

1991	468,46	129,43	0,00	77,80	21,84	0,00	116,32	0,00
1992	431,64	165,33	0,00	67,29	30,66	0,00	86,19	0,00
1993	575,40	328,43	0,00	89,20	36,95	0,00	83,46	0,00
1994	1007,46	120,21	0,00	120,02	22,63	0,00	141,14	0,00
1995	1374,27	32,81	0,00	183,41	7,90	0,00	217,33	0,00
1996	1399,21	6,33	0,00	222,76	1,31	0,00	288,07	0,00
1997	1568,80	0,92	0,00	232,89	0,20	0,00	426,55	0,00
1998	1210,90	0,98	0,00	177,83	0,24	0,00	475,73	0,00
1999	1002,00	9,85	0,00	120,23	1,10	0,00	473,80	0,00
2000	1167,16	9,61	0,00	143,32	0,68	0,00	634,98	0,00
2001	1280,12	14,98	0,00	132,30	3,36	0,00	753,16	0,00
2002	1181,78	36,77	0,00	104,66	8,60	0,00	861,47	0,00
2003	1046,47	83,11	39,10	110,49	3,35	9,08	954,62	0,00
2004	967,24	12,45	278,76	102,66	1,15	49,62	1057,33	0,00
2005	609,90	30,90	728,38	87,13	1,45	83,73	1213,52	0,00
2006	260,82	1,65	1293,75	55,74	0,21	136,59	1413,06	0,00
2007	186,55	0,09	1788,88	59,11	0,02	214,21	1734,35	0,00
2008	127,90	0,07	2065,31	89,13	0,02	263,93	2140,91	0,00
2009	113,28	0,06	2361,42	108,45	0,01	290,88	1349,96	189,51
2010	132,12	0,04	2512,55	148,61	0,01	363,63	1485,16	345,45

Fonte: ANFAVEA (2014) e ABRACICLO (2014).

Tabela 38 - Licenciamentos anuais de veículos novos Ciclo Diesel por tipo de combustível (em mil veículos)

	Veículos	Ô	nibus		Caminhões	;
Ano	Comerciais Leves	Urbano	Rodoviário	Leves	Médios	Pesados
1957	0	1,61	0,29	0,85	13,12	0,57
1958	0	2,85	0,49	1,13	22,75	4,61
1959	0,47	2,75	0,33	1,62	31,40	4,20
1960	0,31	3,32	0,53	3,86	28,82	5,37
1961	0,00	2,84	0,20	2,17	20,96	3,16
1962	0,54	3,19	0,16	3,45	29,27	3,47
1963	1,49	1,93	0,21	1,51	17,22	2,80
1964	2,22	1,10	0,20	1,85	10,76	2,26
1965	0,98	1,70	0,17	2,01	17,58	2,87
1966	0,86	2,21	0,16	2,78	24,96	2,86
1967	0,65	2,63	0,24	2,72	23,13	1,77
1968	0,92	3,38	0,53	4,31	33,91	2,23
1969	0,91	5,33	0,28	4,35	32,61	2,66
1970	0,59	3,79	0,32	3,93	31,75	2,67
1971	0,50	3,34	0,97	4,08	30,64	3,12
1972	0,59	3,39	0,75	7,75	39,24	3,56
1973	0,57	5,10	1,09	9,67	50,42	5,05
1974	0,55	5,88	0,89	10,56	54,00	7,12
1975	0,73	7,43	0,99	9,92	51,76	8,73
1976	1,45	9,21	1,09	26,95	38,23	10,29
1977	2,61	10,08	1,45	17,26 62,98		10,56
1978	4,32	10,21	0,83	18,39	53,75	8,92
1979	15,87	9,74	1,05	19,26	52,87	6,93
1980	19,69	9,19	1,48	34,71	39,11	8,59
1981	34,90	8,45	0,38	13,59	36,74	5,52
1982	43,98	7,07	0,49	12,08	24,49	4,63
1983	28,64	5,52	0,72	11,21	18,85	4,47
1984	29,18	4,74	0,83	15,11	22,03	5,72
1985	26,17	5,39	1,28	21,00	27,23	7,43
1986	27,42	6,92	1,37	25,72	53,29	9,98
1987	23,58	8,60	1,14	18,80	28,55	9,04
1988	36,04	11,29	1,18	17,93	26,91	10,07
1989	43,61	7,90	1,29	15,73	24,92	9,61
1990	36,42	6,90	2,01	14,16	17,63	9,52
1991	34,91	12,39	2,32	15,07	17,00	9,18
1992	29,73	10,77	1,59	11,02	9,28	8,13
1993	51,42	8,66	2,73	11,31	12,70	13,76

1994	60,13	5,38	4,93	15,25	16,98	12,88
1995	53,90	9,73	5,11	16,04	22,55	18,37
1996	43,52	8,31	3,83	11,19	15,96	13,42
1997	70,86	9,55	4,54	14,01	20,84	17,46
1998	76,47	10,54	4,69	13,29	21,29	15,34
1999	62,43	7,20	3,47	16,18	18,10	12,63
2000	83,06	10,17	6,22	18,73	23,71	18,92
2001	80,43	14,38	1,40	30,84	25,82	13,85
2002	64,34	11,05	0,73	25,40	25,73	13,10
2003	54,73	15,81	1,04	22,52	26,49	17,36
2004	66,25	14,40	1,51	26,28	32,00	24,47
2005	77,45	13,90	2,11	27,73	32,45	20,20
2006	82,95	17,34	1,84	26,24	30,01	19,67
2007	92,18	21,64	2,63	31,15	39,53	29,23
2008	124,64	25,67	2,27	33,51	51,69	37,90
2009	134,64	22,08	1,80	34,90	47,09	31,60
2010	172,00	28,55	2,24	45,91	70,62	54,28

Fonte: ANFAVEA (2014).

8.4 Consumo de combustível por categoria de veículos

8.4.1 Distribuição do consumo de combustível por tipo de veículo

Tabela 39 - Distribuição do consumo de gasolina C por tipo de veículo (em 10⁶ m³)

						Gaso	lina C					
		Auton	nóveis		Vei	ículos Com	erciais Lev	/es	Motocicleta			
Ano	Gasol	ina C	Flex	fuel	Gasol	lina C	Flex	fuel	Gasol	ina C	Flex f	fuel
	Gasolina A	Etanol Anidro										
1990	7,93	1,19	0	0	0,85	0,13	0	0	0,50	0,07	0	0
1991	7,92	2,23	0	0	0,87	0,25	0	0	0,48	0,14	0	0
1992	8,28	2,34	0	0	0,93	0,26	0	0	0,48	0,14	0	0
1993	8,79	2,48	0	0	1,00	0,28	0	0	0,47	0,13	0	0
1994	9,97	2,81	0	0	1,15	0,33	0	0	0,47	0,13	0	0
1995	11,75	3,32	0	0	1,36	0,38	0	0	0,48	0,14	0	0
1996	13,85	3,91	0	0	1,64	0,46	0	0	0,50	0,14	0	0
1997	15,49	4,37	0	0	1,91	0,54	0	0	0,54	0,15	0	0
1998	15,87	5,01	0	0	1,99	0,63	0	0	0,57	0,18	0	0
1999	15,47	4,89	0	0	1,96	0,62	0	0	0,60	0,19	0	0
2000	14,85	4,69	0	0	1,88	0,59	0	0	0,63	0,20	0	0
2001	14,82	4,68	0	0	1,88	0,59	0	0	0,70	0,22	0	0
2002	14,90	4,97	0	0	1,86	0,62	0	0	0,79	0,26	0	0
2003	15,41	5,14	0,01	0,00	1,88	0,63	0,01	0,00	0,91	0,30	0	0
2004	15,76	5,25	0,08	0,03	1,90	0,63	0,08	0,03	1,04	0,35	0	0
2005	16,64	4,16	0,34	0,08	1,98	0,50	0,34	0,08	1,22	0,31	0	0
2006	14,48	4,32	0,90	0,27	1,73	0,52	0,90	0,27	1,23	0,37	0	0

2007	13,47	4,49	1,92	0,64	1,62	0,54	1,92	0,64	1,38	0,46	0	0
2008	12,83	4,28	2,87	0,96	1,58	0,53	2,87	0,96	1,52	0,51	0	0
2009	11,80	3,93	3,80	1,27	1,53	0,51	3,80	1,27	1,46	0,49	0,01	0,00
2010	12,51	4,17	5,58	1,86	1,76	0,59	5,58	1,86	1,82	0,61	0,04	0,01

Tabela 40 - Distribuição do consumo de etanol hidratado por tipo de veículo (em $10^6 \ m^3$)

		Et	anol hidra	itado	
Ano	Auton	nóveis	Veíc Comercia		Motocicleta
	Etanol	Flex fuel	Etanol	Flex fuel	Flex fuel
1990	9,16		1,05	0	0
1991	9,20	0	1,05	0	0
1992	8,42	0	0,97	0	0
1993	8,67	0	1,00	0	0
1994	8,76	0	1,00	0	0
1995	8,92	0	1,02	0	0
1996	8,79	0	1,00	0	0
1997	7,47	0	0,84	0	0
1998	6,95	0	0,76	0	0
1999	6,36	0	0,69	0	0
2000	4,92	0	0,52	0	0
2001	3,86	0	0,40	0	0
2002	3,94	0	0,40	0	0
2003	3,41	0,01	0,35	0,00	0
2004	4,24	0,15	0,41	0,03	0
2005	4,31	0,82	0,41	0,11	0
2006	4,32	2,11	0,40	0,26	0
2007	4,74	4,59	0,43	0,60	0
2008	4,38 8,86		0,39	1,04	0
2009	3,27 11,58		0,29	1,31	0,03
2010	2,24	12,25	0,19	1,38	0,10

Tabela 41 - Distribuição do consumo de diesel por tipo de veículo (em $10^6 \ m^3$)

			Diesel			
Ano	Veículos	Ôr	nibus		Caminhõe	S
Allo	Comerciais Leves	Urbano	Rodoviário	Leves	Médios	Pesados
1990	0,64	4,36	1,25	0,51	6,93	4,58
1991	0,70	4,59	1,40	0,53	6,96	4,88
1992	0,75	4,83	1,51	0,53	6,75	5,01
1993	0,80	5,08	1,63	0,54	6,60	5,26
1994	0,90	5,24	1,88	0,55	6,53	5,70
1995	1,02	5,40	2,31	0,58	6,58	6,24
1996	1,10	5,55	2,67	0,59	6,50	6,75
1997	1,21	5,83	3,03	0,61	6,57	7,35
1998	1,36	6,08	3,42	0,63	6,59	7,96
1999	1,46	6,13	3,67	0,63	6,41	8,21
2000	1,58	6,26	3,99	0,65	6,39	8,65
2001	1,70	6,39	4,29	0,67	6,29	9,03
2002	1,84	6,82	4,32	0,73	6,40	9,46
2003	1,82	6,70	4,01	0,72	6,08	9,27
2004	1,94	7,32	4,09	0,77	6,34	10,13
2005	1,93	7,31	3,90	0,77	6,16	10,36
2006	1,99	7,48	3,84	0,79	6,13	10,66
2007	2,13	8,08	3,91	0,84	6,34	11,42
2008	2,28	8,77	3,97	0,88	6,61	12,47
2009	2,29	8,78	3,67	0,86	6,42	12,61
2010	2,62	9,77	3,79	0,94	7,06	14,31

8.4.2 Distribuição do consumo do veículo por tipo de combustível

Tabela 42 - Distribuição do consumo combustível por automóveis (em 10⁶ m³)

			Auton	nóveis		
	Gasol	ina C			Flex flue	l
Ano	Gasot	ilia C	Etanol	Gasol	ina C	Etomol
	Gasolina A	Etanol anidro	hidratado	Gasolina A	Etanol anidro	Etanol hidratado
1990	7,93	1,19	9,09	0	0	0
1991	7,92	2,23	9,12	0	0	0
1992	8,28	2,34	8,35	0	0	0
1993	8,79	2,48	8,60	0	0	0
1994	9,97	2,81	8,67	0	0	0
1995	11,75	3,32	8,84	0	0	0
1996	13,85	3,91	8,71	0	0	0
1997	15,49	4,37	7,40	0	0	0
1998	15,87	5,01	6,89	0	0	0
1999	15,47	4,89	6,31	0	0	0
2000	14,85	4,69	4,88	0	0	0
2001	14,82	4,68	3,83	0	0	0
2002	14,90	4,97	3,91	0	0	0
2003	15,41	5,14	3,37	0,01	0,00	0,01
2004	15,76	5,25	4,08	0,08	0,03	0,27
2005	16,64	4,16	4,03	0,34	0,08	1,08
2006	14,48	4,32	4,03	0,90	0,27	2,35
2007	13,47	4,49	4,18	1,92	0,64	5,13
2008	12,83	4,28	3,85	2,87	0,96	9,35
2009	11,80	3,93	2,92	3,80	1,27	11,89
2010	12,51	4,17	2,01	5,58	1,86	12,44

Tabela 43 - Distribuição do consumo combustível por veículos comerciais leves (em $10^6\ m^3$)

			Veí	culos Com	erciais Lev	/es		
	Gasol	ina C			Flex fuel			
Ano	Gasot	ilia C	Etanol	Gasol	lina C		Diesel	Biodiesel
	Gasolina A	Etanol anidro	hidratado	Gasolina A	Etanol anidro	Etanol hidratado	Dieset	Biodicact
1990	0,85	0,13	1,05	0	0	0	0,64	0
1991	0,87	0,25	1,05	0	0	0	0,70	0
1992	0,93	0,26	0,97	0	0	0	0,75	0
1993	1,00	0,28	1,00	0	0	0	0,80	0
1994	1,15	0,33	1,00	0	0	0	0,90	0
1995	1,36	0,38	1,02	0	0	0	1,02	0
1996	1,64	0,46	1,00	0	0	0	1,10	0
1997	1,91	0,54	0,84	0	0	0	1,21	0
1998	1,99	0,63	0,76	0	0	0	1,36	0
1999	1,96	0,62	0,69	0	0	0	1,46	0
2000	1,88	0,59	0,52	0	0	0	1,58	0
2001	1,88	0,59	0,40	0	0	0	1,70	0
2002	1,86	0,62	0,40	0	0	0	1,84	0
2003	1,88	0,63	0,35	0,01	0,00	0,00	1,82	0
2004	1,90	0,63	0,41	0,08	0,03	0,03	1,94	0
2005	1,98	0,50	0,41	0,34	0,08	0,11	1,93	0
2006	1,73	0,52	0,40	0,90	0,27	0,26	1,99	0,00
2007	1,62	0,54	0,43	1,92	0,64	0,60	2,11	0,02
2008	1,58	0,53	0,39	2,87	0,96	1,04	2,22	0,06
2009	1,53	0,51	0,29	3,80	1,27	1,31	2,21	0,08
2010	1,76	0,59	0,19	5,58	1,86	1,38	2,49	0,12

Tabela 44 - Distribuição do consumo combustível por motocicletas (em $10^6 \ m^3$)

		1	Motocicleta	as			
	Gasol	ina C	Flex fuel				
Ano	Gasot	IIIa C	Gasol	ina C			
	Gasolina A	Etanol anidro	Gasolina A	Etanol anidro	Etanol hidratado		
1990	0,50	0,07	0	0	0		
1991	0,48	0,14	0	0	0		
1992	0,48	0,14	0	0	0		
1993	0,47	0,13	0	0	0		
1994	0,47	0,13	0	0	0		
1995	0,48	0,14	0	0	0		
1996	0,50	0,14	0	0	0		
1997	0,54	0,15	0	0	0		
1998	0,57	0,18	0	0	0		
1999	0,60	0,19	0	0	0		
2000	0,63	0,20	0	0	0		
2001	0,70	0,22	0	0	0		
2002	0,79	0,26	0	0	0		
2003	0,91	0,30	0	0	0		
2004	1,04	0,35	0	0	0		
2005	1,22	0,31	0	0	0		
2006	1,23	0,37	0	0	0		
2007	1,38	0,46	0	0	0		
2008	1,52	0,51	0	0	0		
2009	1,46	0,49	0,01	0	0,03		
2010	1,82	0,61	0,04	0,01	0,1		

Tabela 45 - Distribuição do consumo do diesel por ônibus (em $10^6 \ m^3$)

		Ôni	bus		
Ano	Urb	ano	Rodoviário		
Allo	Diesel	Biodiesel	Diesel	Biodiesel	
1990	4,36	0	1,25	0	
1991	4,59	0	1,40	0	
1992	4,83	0	1,51	0	
1993	5,08	0	1,63	0	
1994	5,24	0	1,88	0	
1995	5,40	0	2,31	0	
1996	5,55	0	2,67	0	
1997	5,83	0	3,03	0	
1998	6,08	0	3,42	0	
1999	6,13	0	3,67	0	
2000	6,26	0	3,99	0	
2001	6,39	0	4,29	0	
2002	6,82	0	4,32	0	
2003	6,70	0	4,01	0	
2004	7,32	0	4,09	0	
2005	7,31	0	3,90	0	
2006	7,47	0,01	3,83	0,01	
2007	8,02	0,06	3,88	0,03	
2008	8,55	0,22	3,87	0,10	
2009	8,46	0,32	3,53	0,13	
2010	9,31	0,46	3,61	0,18	

Tabela 46 - Distribuição do consumo de diesel por caminhões (em $10^6 \ \text{m}^3$)

		Caminhões										
Anos	Le	ves	Mé	dios	Pes	ados						
	Diesel	Biodiesel	Diesel	Biodiesel	Diesel	Biodiesel						
1990	0,51	0	6,93	0	4,58	0						
1991	0,53	0	6,96	0	4,88	0						
1992	0,53	0	6,75	0	5,01	0						
1993	0,54	0	6,60	0	5,26	0						
1994	0,55	0	6,53	0	5,70	0						
1995	0,58	0	6,58	0	6,24	0						
1996	0,59	0	6,50	0	6,75	0						
1997	0,61	0	6,57	0	7,35	0						
1998	0,63	0	6,59	0	7,96	0						
1999	0,63	0	6,41	0	8,21	0						
2000	0,65	0	6,39	0	8,65	0						
2001	0,67	0	6,29	0	9,03	0						
2002	0,73	0	6,40	0	9,46	0						
2003	0,72	0	6,08	0	9,27	0						
2004	0,77	0	6,34	0	10,13	0						
2005	0,77	0	6,16	0	10,36	0						
2006	0,79	0,00	6,12	0,01	10,64	0,021						
2007	0,83	0,01	6,33	0,01	11,39	0,023						
2008	0,86	0,02	6,60	0,01	12,44	0,025						
2009	0,83	0,03	6,41	0,01	12,58	0,025						
2010	0,90	0,04	7,05	0,01	14,28	0,029						

8.5 Fatores de Ajuste e Correção do Consumo de Combustível

Conforme visto na seção 2.1, o consumo de combustível foi estimado e ajustado com base no Balanço Energético Nacional 2013, EPE (2013). As Figuras 35, 36 e 37 a seguir mostram as comparações entre os consumos estimados e observados para Gasolina C, Etanol Hidratado e Diesel.

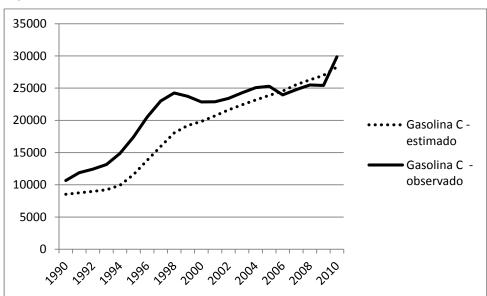


Figura 35 - Consumo estimado x observado - Gasolina C

Fonte: Elaboração própria.

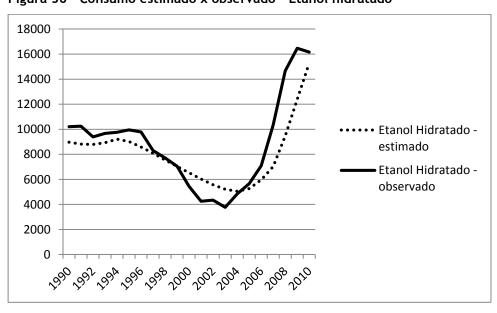
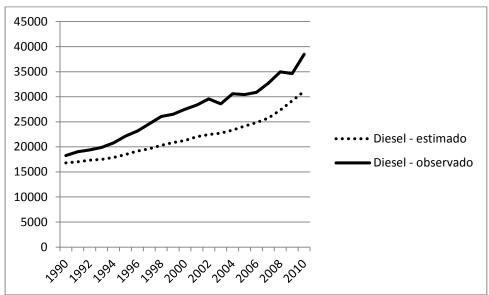



Figura 36 - Consumo estimado x observado - Etanol hidratado

Figura 37 - Consumo estimado \boldsymbol{x} observado - Diesel

8.6 Programa de Controle de Poluição do Ar por Veículos Automotores

Em 6 de maio de 1986, a Resolução nº 18 do CONAMA criou o Programa de Controle de Poluição do Ar por Veículos Automotores (PROCONVE), coordenado pelo IBAMA, o qual veio para definir os primeiros limites de emissão para veículos leves e contribuir para o atendimento aos padrões de qualidade do ar instituídos pelo Programa Nacional de Controle de Qualidade do Ar (PRONAR). Em 28 de outubro de 1993, a lei nº 8.723 endossou a obrigatoriedade de reduzir os níveis de emissão dos poluentes de origem veicular, contribuindo para induzir o desenvolvimento tecnológico dos fabricantes de combustíveis, motores e autopeças, e permitindo que veículos nacionais e importados passassem a atender aos limites estabelecidos.

O PROCONVE também impõe a certificação de protótipos (homologação) e o acompanhamento estatístico em veículos novos produzidos, a autorização do IBAMA para uso de combustíveis alternativos, o recolhimento ou reparo de veículos e motores encontrados em desconformidade com a produção ou projeto, e a proibição da comercialização de modelos de veículos não homologados. Essa homologação faz com que as montadoras apliquem conceitos de projetos que assegurem um baixo potencial poluidor aos veículos novos, e uma taxa de deterioração das emissões ao longo de sua vida útil que garanta o atendimento aos limites estabelecidos.

O controle pelo programa se dá a partir da classificação dos veículos em razão de seu peso bruto total (PBT), sendo que as fases caracterizadas por "L" para veículos leves e "P" para veículos pesados, vêm sendo implantadas segundo estratégias diferenciadas.

Ainda que a Resolução CONAMA nº 18 de 1986 tenha dado os primeiros encaminhamentos para o controle da emissão de veículos a diesel, só em 1993, por meio da Resolução CONAMA nº 8, de 31 de agosto, as inovações são mais visíveis no segmento de veículos pesados.

A mesma preocupação com as emissões para a atmosfera vale para o segmento das motocicletas (e veículos similares), cuja frota vem experimentando um crescimento vertiginoso nos últimos anos. Assim, tornou necessário o estabelecimento de um programa específico para o controle das emissões desses veículos, muito em razão dos seus elevados fatores de emissão quando comparados aos automóveis novos.

Surgiu, então, em 2002, o Programa de Controle da Poluição do Ar por Motociclos e Veículos Similares (PROMOT), introduzido pela Resolução CONAMA nº 297, de 2002, com o objetivo de complementar o controle do PROCONVE.

De maneira análoga ao PROCONVE, são denominadas "fases" do PROMOT os intervalos de tempo entre a vigência de um determinado limite de emissão dado pela legislação e a entrada em vigor de novos limites mais restritivos, fases "M". Nas fases estão contempladas inovações tecnológicas nas motocicletas e veículos similares que possibilitam a redução das emissões.

A despeito dos sabidos ganhos obtidos com esses programas, a continuidade do PROCONVE e do PROMOT deverá basear-se na identificação dos seus reais ganhos ao meio ambiente e evoluir para que se possam traçar associações claras entre a definição de suas novas fases tecnológicas e de restrição das emissões com o estado da qualidade do ar, sobretudo nas grandes cidades brasileiras.

Tabela 47 - Estratégia de implantação do PROCONVE para veículos leves (Fases "L")

Fase	Implementação	Característica/inovação
L1	1988-1991	Caracterizada pela eliminação dos modelos mais poluentes e aprimoramento dos projetos dos modelos já em produção. Iniciouse também nesta fase o controle das emissões evaporativas. As principais inovações tecnológicas que ocorreram nesta fase foram: reciclagem dos gases de escapamento para controle das emissões de óxidos de nitrogênio (NO _x); injeção secundária do ar no coletor de exaustão para o controle de monóxido de carbono (CO) e hidrocarbonetos (HC); implantação de amortecedor da borboleta do carburador para controle do HC e otimização do avanço da ignição.
L2	1992-1996	A partir dos limites verificados na Resolução CONAMA nº 18 de 1986, nessa fase investiu-se na adequação de catalisadores e sistemas de injeção eletrônica para uso com mistura de etanol, em proporção única no mundo. As principais inovações nos veículos foram a injeção eletrônica, os carburadores assistidos eletronicamente e os conversores catalíticos. Em 1994 iniciou-se o controle de ruído dos veículos.
L3	1997-2004	Em face da exigência de atender aos limites estabelecidos a partir de 1º de janeiro de 1997 (Resolução CONAMA nº 15 de 1995), ocorreram reduções bastante significativas em relação aos limites anteriores, e o fabricante/importador empregou, conjuntamente, as melhores tecnologias disponíveis para a formação de mistura e controle eletrônico do motor como, por exemplo, o sensor de oxigênio (denominado "sonda lambda").
L4	2005-2008	Tendo como referência a Resolução CONAMA nº 315 de 2002, a prioridade nesta fase que teve início no ano de 2005 é a redução das emissões de HC e NO _x , poluentes precursores da formação de ozônio. Para o atendimento desta fase, se deu o desenvolvimento de motores com novas tecnologias como a otimização da geometria

Fase	Implementação	Característica/inovação
		da câmara de combustão e dos bicos de injeção, o aumento da pressão da bomba injetora e a injeção eletrônica.
L5	2009-2013	Com os limites de emissão da Resolução CONAMA nº 315 de 2002, da mesma forma que na fase L4, a prioridade na fase L5 é a redução das emissões de HC e NO _x . De maneira análoga à fase L4, as inovações tecnológicas se deram na otimização da geometria da câmara de combustão e dos bicos, o aumento da pressão da bomba injetora e a injeção eletrônica.
L6	A partir de 2013	Em 2009, o CONAMA, ao aprovar a Resolução nº 415, introduziu a Fase L6 que entrará em vigor em 2013. L6 estabelece, basicamente, novos limites máximos para a emissão de escapamento de veículos automotores leves novos de passageiros de massa menor ou igual a 1.700 quilogramas e veículos leves comerciais com massa superior a 1.700 quilogramas. Ambas as categorias são para uso rodoviário, e contemplam tanto veículos do ciclo Otto quanto veículos do ciclo Diesel. Para o futuro ainda está prevista a introdução de catalisadores de oxidação, de filtro de particulados e de recirculação de gases.

Fonte: MMA 2014.

Tabela 48 - Estratégia de implantação do PROCONVE para veículos pesados (Fases "P")

Fase	Implementação	Característica/inovação
P1 e P2	1990-1993	Já em 1990 estavam sendo produzidos motores com níveis de
		emissão menores que aqueles que seriam requeridos em 1993
		(ano em que teve início o controle de emissão para veículos deste
		tipo com a introdução das fases P1 e P2). Nesse período, os
		limites para emissão gasosa - fase P1 - e material particulado
		(MP) - fase P2 - não foram exigidos legalmente.
P3	1994-1997	O desenvolvimento de novos modelos de motores visaram a
		redução do consumo de combustível, aumento da potência e
		redução das emissões de NO _x por meio da adoção de <i>intercooler</i>
		e motores turbo. Nesta fase se deu uma redução drástica das
		emissões de CO (43%) e HC (50%).
P4	1998-2002	Reduziu ainda mais os limites criados pela fase P3.
P5	2003-2008	Teve como objetivo a redução de emissões de MP, NO _x e HC.
P6	2009-2011	Em janeiro de 2009 deveria ter se dado o início à fase P6,
		conforme Resolução CONA-MA nº 315 de 2002, e cujo objetivo
		principal, assim como na fase P5, era a redução de emissões de
		MP, NO _x e HC.
P7	A partir de	Resolução CONAMA nº 403 de 2008 introduz uma fase que
	2012	demanda sistemas de controle de emissão pós-combustão
		(catalisadores de redução de NO _x e/ou filtros de MP).

Fonte: MMA 2014.

Tabela 49 - Estratégia de implantação do PROMOT (Fases "M")

Fase	Implementação	Característica/inovação						
M1	2003-2005	Estabeleceu os limites iniciais máximos de emissão de gases de						
		escapamento para motocicletas e veículos similares.						
M2	2006-2008	Iniciou a segunda fase com reduções drásticas dos limites de						
		emissão da primeira fase (redução de 83% em CO; redução de 60%						
		em HC + NO _x).						
M3	A partir de 2009	Também ocorre uma redução significativa das emissões de						
		poluentes sendo, em alguns casos, superiores a 50% dos limites						
		previstos na fase anterior.						

Fonte: MMA 2014.

8.7 Emissões

Tabela 50 - Emissões de ${\rm CO_2}$ por tipo de combustível

	Emissões de CO ₂ (Gg/ano) por tipo de combustível									
Ano	Gasolina A	Etanol anidro	Etanol hidratado	Diesel	Biodiesel	Gás Natural	Total			
1990	20.729	2.195	15.316	48.077	0	5	86.322			
1991	20.710	4.140	15.376	50.140	0	5	90.370			
1992	21.640	4.325	14.081	51.032	0	0	91.078			
1993	22.909	4.579	14.511	52.372	0	52	94.423			
1994	25.889	5.175	14.616	54.733	0	94	100.507			
1995	30.353	6.067	14.903	58.281	0	101	109.705			
1996	35.722	7.140	14.667	60.958	0	75	118.563			
1997	40.073	8.010	12.451	64.759	0	96	125.389			
1998	41.167	9.213	11.570	68.551	0	272	130.774			
1999	40.259	9.010	10.573	69.744	0	329	129.914			
2000	38.782	8.679	8.163	72.410	0	646	128.681			
2001	38.849	8.694	6.384	74.676	0	1.182	129.784			
2002	39.180	9.255	6.514	77.827	0	2.025	134.801			
2003	40.687	9.613	5.643	75.273	0	2.746	133.962			
2004	42.057	9.948	7.245	80.509	0	3.265	143.023			
2005	45.547	8.108	8.502	80.090	0	2.751	144.998			
2006	42.264	9.071	10.645	81.165	152	4.768	148.064			
2007	43.902	10.667	15.616	85.696	381	5.290	161.552			
2008	46.218	11.361	22.110	90.914	1.071	5.069	176.742			
2009	47.153	11.725	24.843	89.562	1.473	4.353	179.109			
2010	56.714	14.258	24.372	99.074	2.082	4.151	200.650			

Tabela 51 - Emissões de CO₂ por tipo de veículo

				Emissõ	es de CO ₂ (G	g/ano) por ti	po de veíc	ulo			
Ano	Automóveis	Comercia	ais Leves	Motocicletas	Ôni	bus		Caminhões		GNV	Total
	Automovers	Otto	Diesel	Motocicietas	Urbanos	Rodoviários	Leves	Médios	Pesados	GINV	Total
1990	33.321	3.688	1.672	1.231	11.481	3.288	1.330	18.250	12.055	5	86.322
1991	35.000	3.926	1.852	1.299	12.078	3.683	1.387	18.307	12.833	5	90.370
1992	34.801	3.956	1.961	1.289	12.726	3.981	1.403	17.771	13.190	0	91.078
1993	36.535	4.206	2.108	1.258	13.359	4.280	1.424	17.365	13.836	52	94.423
1994	39.803	4.605	2.375	1.273	13.787	4.942	1.460	17.177	14.993	94	100.507
1995	44.851	5.182	2.697	1.291	14.212	6.079	1.530	17.326	16.436	101	109.705
1996	50.268	5.910	2.901	1.352	14.600	7.019	1.556	17.113	17.770	75	118.563
1997	52.686	6.389	3.187	1.459	15.336	7.984	1.613	17.291	19.348	96	125.389
1998	53.780	6.604	3.574	1.566	16.000	9.003	1.659	17.354	20.962	272	130.774
1999	51.813	6.382	3.838	1.646	16.129	9.663	1.654	16.862	21.598	329	129.914
2000	47.964	5.932	4.159	1.729	16.463	10.511	1.711	16.807	22.758	646	128.681
2001	46.280	5.731	4.472	1.916	16.827	11.293	1.764	16.557	23.762	1182	129.784
2002	47.045	5.731	4.854	2.173	17.940	11.366	1.913	16.846	24.907	2025	134.801
2003	47.685	5.742	4.787	2.515	17.641	10.553	1.896	16.006	24.391	2746	133.962
2004	50.320	6.070	5.101	2.860	19.277	10.763	2.036	16.677	26.654	3265	143.023
2005	52.322	6.620	5.084	3.215	19.237	10.255	2.035	16.209	27.271	2751	144.998
2006	51.244	7.407	5.240	3.328	19.698	10.100	2.084	16.145	28.050	4768	148.064
2007	56.552	9.825	5.606	3.808	21.261	10.280	2.205	16.680	30.045	5290	161.552
2008	63.287	12.195	5.992	4.206	23.046	10.430	2.321	17.391	32.805	5069	176.742
2009	65.447	14.173	6.021	4.102	23.048	9.626	2.253	16.908	33.179	4353	179.109
2010	71.754	18.299	6.864	5.291	25.645	9.933	2.479	18.579	37.655	4151	200.650

Tabela 52 - Emissões de CO por tipo de combustível

	Emissõ	es de CO (G	g/ano) por	tipo de co	mbustível
Ano	Gasolina C	Etanol hidratado	Gás Natural	Diesel	Total
1990	4.528	1.200	0	128	5.856
1991	4.748	1.193	0	134	6.075
1992	4.762	1.068	0	136	5.966
1993	4.769	1.040	0	140	5.949
1994	4.963	1.035	0	146	6.144
1995	5.175	1.043	0	155	6.373
1996	5.366	1.031	0	162	6.560
1997	5.121	873	0	172	6.167
1998	4.937	810	1	181	5.928
1999	4.437	737	1	183	5.358
2000	3.968	566	2	189	4.725
2001	3.702	439	4	194	4.339
2002	3.811	443	7	201	4.461
2003	3.459	373	9	193	4.035
2004	3.295	443	11	206	3.955
2005	3.116	432	13	201	3.762
2006	2.673	430	16	198	3.316
2007	2.484	450	17	202	3.154
2008	2.362	430	16	207	3.015
2009	2.106	386	14	196	2.702
2010	2.279	375	13	208	2.875

Tabela 53 - Emissões de CO por tipo de veículo

	Emissões de CO (Gg/ano) por tipo de veículo											
Ano	Automóveis	Comerciais Le		Motosislatas	Ôn	ibus	Caminhões			GNV	Total	
	Automoveis	Otto	Diesel	Motocicletas	Urbanos	Rodoviários	Leves	Médios	Pesados	GNV	Total	
1990	4.624	496	4	609	31	9	4	49	32	0	5.856	
1991	4.784	516	5	641	32	10	4	49	34	0	6.075	
1992	4.688	505	5	637	34	11	4	47	35	0	5.966	
1993	4.685	503	6	621	36	11	4	46	37	0	5.949	
1994	4.851	519	6	628	37	13	4	46	40	0	6.144	
1995	5.050	530	7	637	38	16	4	46	44	0	6.373	
1996	5.189	540	8	667	39	19	4	46	47	0	6.560	
1997	4.781	493	8	720	41	21	4	46	51	0	6.167	
1998	4.511	463	9	773	42	24	4	46	55	1	5.928	
1999	3.958	403	10	813	43	25	4	45	56	1	5.358	
2000	3.341	339	11	853	43	27	4	44	59	2	4.725	
2001	2.901	295	11	946	44	29	5	43	61	4	4.339	
2002	2.880	301	12	1.072	46	29	5	44	64	7	4.461	
2003	2.421	244	12	1.167	45	27	5	42	62	9	4.035	
2004	2.320	232	13	1.187	49	27	5	43	68	11	3.955	
2005	2.151	215	12	1.182	48	26	5	41	68	13	3.762	
2006	1.857	188	12	1.057	47	25	5	40	68	16	3.316	
2007	1.727	182	13	1.026	49	25	5	41	70	17	3.154	
2008	1.587	175	13	1.030	51	25	5	41	72	16	3.015	
2009	1.368	162	12	962	48	22	5	38	70	14	2.702	
2010	1.304	170	13	1.180	51	22	5	40	75	13	2.875	

Tabela 54 - Emissões de CH₄ por tipo de combustível

	Emissõe	es de CH4 (C	g/ano) por	tipo de co	mbustível
Ano	Gasolina C	Etanol hidratado	Gás Natural	Diesel	Total
1990	65	3	0	4	72
1991	69	3	0	4	76
1992	69	3	0	4	76
1993	69	3	0	4	76
1994	73	3	0	5	80
1995	78	3	0	5	85
1996	83	3	0	5	91
1997	84	2	0	5	92
1998	80	2	0	6	88
1999	74	2	0	6	82
2000	67	1	1	6	75
2001	64	1	2	6	73
2002	63	1	3	6	73
2003	64	1	4	6	74
2004	63	1	4	6	75
2005	61	1	5	6	74
2006	54	2	6	6	68
2007	52	2	7	7	68
2008	51	3	6	7	67
2009	46	3	6	7	62
2010	50	3	5	8	66

Tabela 55 - Emissões de CH₄ por tipo de veículo

	Emissões de CH₄ (Gg/ano) por tipo de veículo										
Ano	Automóveis	Comerciais Leves		Motocicletas	Ôn	ibus	Caminhões			GNV	Total
	71450111511515	Otto	Diesel	moto crete tas	Urbanos	Rodoviários	Leves	Médios	Pesados	0	rotat
1990	48,7	7,2	0,0	12,0	0,6	0,2	0,2	2,3	0,9	0,0	72,2
1991	51,3	7,5	0,0	12,7	0,6	0,3	0,2	2,3	0,9	0,0	75,9
1992	51,6	7,4	0,0	12,6	0,7	0,3	0,2	2,3	1,0	0,0	76,0
1993	52,0	7,4	0,0	12,3	0,7	0,3	0,2	2,2	1,0	0,1	76,2
1994	55,0	7,7	0,0	12,4	0,7	0,3	0,3	2,2	1,1	0,1	79,9
1995	59,7	8,1	0,0	12,6	0,7	0,4	0,3	2,2	1,2	0,1	85,4
1996	64,0	8,5	0,1	13,2	0,8	0,5	0,3	2,2	1,3	0,1	90,9
1997	63,8	8,3	0,1	14,3	0,8	0,6	0,3	2,2	1,4	0,1	91,8
1998	59,4	7,7	0,1	15,3	0,8	0,6	0,3	2,2	1,5	0,3	88,3
1999	52,6	6,8	0,1	16,1	0,8	0,7	0,3	2,1	1,6	0,4	81,5
2000	45,9	5,9	0,1	16,9	0,9	0,7	0,3	2,1	1,6	0,8	75,2
2001	41,4	5,2	0,1	18,7	0,9	0,8	0,3	2,1	1,7	1,5	72,7
2002	38,1	4,8	0,1	21,2	0,9	0,8	0,3	2,1	1,8	2,6	72,8
2003	35,9	4,5	0,1	24,6	0,9	0,7	0,3	2,0	1,8	3,5	74,2
2004	33,8	4,3	0,1	26,4	1,0	0,7	0,4	2,1	1,9	4,2	74,9
2005	31,9	4,1	0,1	26,6	1,0	0,7	0,4	2,1	2,0	5,1	74,0
2006	27,5	3,8	0,1	24,5	1,0	0,7	0,4	2,0	2,0	6,1	68,1
2007	26,1	4,0	0,1	24,1	1,1	0,7	0,4	2,1	2,2	6,8	67,6
2008	25,4	4,2	0,1	24,4	1,2	0,7	0,4	2,2	2,4	6,5	67,4
2009	23,6	4,3	0,1	21,5	1,2	0,7	0,4	2,1	2,4	5,6	61,8
2010	24,8	5,0	0,1	23,5	1,3	0,7	0,4	2,4	2,7	5,3	66,3

Tabela 56 - Emissões de NO_x por tipo de combustível

	Emissões de NO _x (Gg/ano) por tipo de combustível								
Ano	Gasolina C	Etanol hidratado	Gás Natural	Diesel	Total				
1990	186,4	112,8	0,0	722,4	1021,6				
1991	204,8	112,8	0,0	753,1	1070,7				
1992	212,6	101,8	0,0	766,3	1080,7				
1993	220,0	99,6	0,1	786,0	1105,7				
1994	239,9	98,6	0,2	820,6	1159,2				
1995	264,4	100,0	0,2	873,0	1237,5				
1996	289,4	98,4	0,1	912,1	1300,1				
1997	275,9	83,6	0,2	968,2	1327,8				
1998	285,5	77,7	0,5	1024,0	1387,7				
1999	260,4	71,0	0,6	1041,3	1373,2				
2000	234,8	54,7	1,1	1064,7	1355,3				
2001	218,3	42,7	2,0	1071,8	1334,7				
2002	206,0	43,2	3,4	1095,6	1348,2				
2003	199,8	36,6	4,6	1038,5	1279,6				
2004	193,5	44,0	5,5	1080,4	1323,4				
2005	194,3	44,0	6,8	1042,4	1287,4				
2006	170,7	45,1	8,0	1028,5	1252,3				
2007	162,4	49,2	8,9	1054,2	1274,8				
2008	155,3	49,5	8,5	1085,5	1298,9				
2009	142,3	41,7	7,3	1031,1	1222,4				
2010	161,1	32,6	7,0	1089,9	1290,6				

Tabela 57 - Emissões de NO_x por tipo de veículo

	Emissões de NO _x (Gg/ano) por tipo de veículo										
Ano		Comerciais Leves			Ôn	ibus	Caminhões				
	Automóveis	Otto	Diesel	Motocicletas	Urbanos	Rodoviários	Leves	Médios	Pesados	GNV	Total
1990	265,8	30,3	25,4	3,1	174,3	49,9	27,6	277,2	168,1	0,0	1021,6
1991	281,8	32,6	28,1	3,3	183,3	55,9	28,8	278,1	179,0	0,0	1070,7
1992	278,7	32,5	29,7	3,2	193,2	60,4	29,1	269,9	184,0	0,0	1080,7
1993	283,4	33,1	32,0	3,2	202,8	64,9	29,6	263,8	193,0	0,1	1105,7
1994	300,2	35,2	36,0	3,2	209,3	75,0	30,3	260,9	209,1	0,2	1159,2
1995	323,6	37,6	40,9	3,2	215,7	92,2	31,8	263,2	229,2	0,2	1237,5
1996	344,4	40,0	44,0	3,4	221,6	106,5	32,3	259,9	247,8	0,1	1300,1
1997	318,7	37,1	48,3	3,7	232,8	121,1	33,5	262,6	269,8	0,2	1327,8
1998	321,6	37,7	54,2	3,9	242,9	136,6	34,4	263,6	292,3	0,5	1387,7
1999	293,1	34,2	58,2	4,1	244,8	146,6	34,3	256,1	301,2	0,6	1373,2
2000	255,4	29,8	61,6	4,3	247,0	155,5	35,1	253,5	312,0	1,1	1355,3
2001	229,3	26,8	63,7	4,8	245,9	162,6	35,3	246,3	317,9	2,0	1334,7
2002	218,3	25,4	67,0	5,4	255,4	162,3	37,2	247,0	326,6	3,4	1348,2
2003	205,9	23,8	64,5	6,7	244,4	149,6	36,1	231,1	312,9	4,6	1279,6
2004	205,4	23,5	66,7	8,5	258,5	150,8	37,8	236,1	330,6	5,5	1323,4
2005	204,3	23,8	64,5	10,2	249,4	141,1	36,6	224,1	326,7	6,8	1287,4
2006	182,7	22,0	64,7	11,1	246,6	136,3	36,4	218,3	326,2	8,0	1252,3
2007	175,4	23,0	67,4	13,2	255,9	135,7	37,5	219,9	337,8	8,9	1274,8
2008	165,8	24,3	70,0	14,8	265,9	134,6	38,3	222,3	354,4	8,5	1298,9
2009	146,1	23,7	67,2	14,2	253,5	121,5	36,0	208,8	344,2	7,3	1222,4
2010	149,9	25,4	72,0	18,5	266,4	122,3	38,1	219,7	371,5	7,0	1290,6

Tabela 58 - Emissões de N_2O por tipo de combustível

	Emissões de N₂O (Gg/ano) por combustível								
Ano	Gasolina C	Etanol hidratado	Gás Natural	Diesel	Total				
1990	0,7	0,1	0,0	2,2	2,9				
1991	0,7	0,1	0,0	2,3	3,1				
1992	0,8	0,1	0,0	2,3	3,1				
1993	0,8	0,1	0,0	2,3	3,2				
1994	1,1	0,1	0,0	2,4	3,6				
1995	1,8	0,1	0,0	2,5	4,4				
1996	2,7	0,1	0,0	2,6	5,4				
1997	3,7	0,1	0,0	2,7	6,5				
1998	4,3	0,1	0,0	2,9	7,3				
1999	4,6	0,1	0,1	2,9	7,6				
2000	4,8	0,0	0,1	3,0	7,9				
2001	5,1	0,0	0,2	3,1	8,4				
2002	5,4	0,0	0,4	3,2	9,0				
2003	5,8	0,0	0,5	3,1	9,4				
2004	6,2	0,0	0,6	3,3	10,1				
2005	6,5	0,1	0,7	3,3	10,5				
2006	6,2	0,1	0,9	3,3	10,5				
2007	6,7	0,3	1,0	3,5	11,4				
2008	7,2	0,5	0,9	3,7	12,3				
2009	7,6	0,6	0,8	3,7	12,7				
2010	9,4	0,7	0,8	4,1	15,0				

Tabela 59 - Emissões de N₂O por tipo de veículo

	Emissões de N2O (Gg/ano) por tipo de veículo										
Ano	A	Comerciais Leves		M-4:	Ôn	ibus	Caminhões			CNIV	
	Automóveis	Otto	Diesel	Motocicletas	Urbanos	Rodoviários	Leves	Médios	Pesados	GNV	Total
1990	0,6	0,1	0,1	0,1	0,3	0,1	0,1	1,2	0,4	0,0	2,9
1991	0,6	0,1	0,1	0,1	0,3	0,1	0,1	1,2	0,5	0,0	3,1
1992	0,6	0,1	0,1	0,1	0,3	0,1	0,1	1,1	0,5	0,0	3,1
1993	0,7	0,1	0,1	0,1	0,4	0,1	0,1	1,1	0,5	0,0	3,2
1994	1,0	0,2	0,2	0,1	0,4	0,1	0,1	1,1	0,5	0,0	3,6
1995	1,6	0,2	0,2	0,1	0,4	0,1	0,1	1,1	0,6	0,0	4,4
1996	2,4	0,4	0,2	0,1	0,4	0,2	0,1	1,1	0,6	0,0	5,4
1997	3,2	0,5	0,2	0,1	0,4	0,2	0,1	1,1	0,7	0,0	6,5
1998	3,8	0,6	0,2	0,1	0,4	0,2	0,1	1,1	0,8	0,0	7,3
1999	4,0	0,6	0,3	0,1	0,4	0,2	0,1	1,1	0,8	0,1	7,6
2000	4,1	0,6	0,3	0,1	0,4	0,2	0,1	1,1	0,8	0,1	7,9
2001	4,4	0,6	0,3	0,1	0,4	0,3	0,2	1,0	0,9	0,2	8,4
2002	4,7	0,6	0,3	0,1	0,5	0,3	0,2	1,1	0,9	0,4	9,0
2003	5,1	0,7	0,3	0,1	0,5	0,2	0,2	1,0	0,9	0,5	9,4
2004	5,4	0,7	0,4	0,1	0,5	0,2	0,2	1,1	1,0	0,6	10,1
2005	5,6	0,8	0,4	0,2	0,5	0,2	0,2	1,0	1,0	0,7	10,5
2006	5,3	0,8	0,4	0,2	0,5	0,2	0,2	1,0	1,0	0,9	10,5
2007	5,7	1,1	0,4	0,2	0,6	0,2	0,2	1,1	1,1	1,0	11,4
2008	6,1	1,4	0,4	0,2	0,6	0,2	0,2	1,1	1,2	0,9	12,3
2009	6,3	1,7	0,4	0,2	0,6	0,2	0,2	1,1	1,2	0,8	12,7
2010	7,5	2,3	0,5	0,3	0,7	0,2	0,2	1,2	1,4	0,8	15,0

Tabela 60 - Emissões de NMVOC por tipo de combustível

	Emissões de NMVOC (Gg/ano) por tipo de combustível							
Ano	Gasolina C	Etanol hidratado	Gás Natural	Diesel	Total			
1990	373,8	115,2	0,0	45,9	534,9			
1991	394,3	115,1	0,0	47,8	557,2			
1992	396,7	103,7	0,0	48,6	549,0			
1993	397,2	101,7	0,0	49,9	548,8			
1994	412,9	101,7	0,0	52,1	566,7			
1995	431,7	102,8	0,0	55,4	589,9			
1996	449,7	100,9	0,0	57,9	608,6			
1997	431,0	85,7	0,0	61,4	578,1			
1998	423,3	79,6	0,0	65,0	567,9			
1999	386,2	72,6	0,0	66,1	525,0			
2000	351,2	55,9	0,1	68,1	475,3			
2001	334,3	43,5	0,2	69,4	447,4			
2002	347,0	44,0	0,3	71,0	462,3			
2003	324,6	37,2	0,4	66,7	429,0			
2004	313,3	44,4	0,5	68,6	426,8			
2005	300,7	43,8	0,6	65,3	410,4			
2006	261,9	44,3	0,7	63,6	370,4			
2007	248,1	47,6	0,8	64,1	360,6			
2008	240,5	46,6	0,8	64,7	352,6			
2009	214,5	38,1	0,7	60,1	313,4			
2010	230,2	29,2	0,6	62,1	322,0			

Tabela 61 - Emissões de NMVOC por tipo de veículo

	Emissões de NMVOC (Gg/ano) por tipo de veículo										
Ano	Autománaia	Comerci	ais Leves	Matarialatas	Ôn	ibus		Caminhõe	S	CNIV	Total
	Automóveis	Otto	Diesel	Motocicletas	Urbanos	Rodoviários	Leves	Médios	Pesados	GNV	
1990	380,8	40,0	1,6	68,3	11,1	3,2	1,8	17,6	10,7	0,0	534,9
1991	395,5	41,9	1,7	72,0	11,7	3,6	1,8	17,7	11,4	0,0	557,2
1992	387,7	41,2	1,8	71,4	12,3	3,8	1,9	17,2	11,7	0,0	549,0
1993	388,1	41,1	2,0	69,7	12,9	4,1	1,9	16,8	12,3	0,0	548,8
1994	401,7	42,5	2,2	70,5	13,3	4,8	1,9	16,6	13,3	0,0	566,7
1995	419,3	43,7	2,5	71,5	13,7	5,9	2,0	16,7	14,6	0,0	589,9
1996	431,2	44,6	2,7	74,9	14,1	6,8	2,1	16,5	15,8	0,0	608,6
1997	395,3	40,6	3,0	80,8	14,8	7,7	2,1	16,7	17,2	0,0	578,1
1998	377,4	38,8	3,3	86,7	15,4	8,7	2,2	16,8	18,6	0,0	567,9
1999	333,7	34,0	3,6	91,2	15,6	9,3	2,2	16,3	19,1	0,0	525,0
2000	282,6	28,8	3,8	95,7	15,8	10,0	2,2	16,2	20,0	0,1	475,3
2001	246,5	25,2	4,1	106,1	15,9	10,7	2,3	15,8	20,6	0,2	447,4
2002	245,0	25,7	4,3	120,3	16,6	10,7	2,4	15,9	21,2	0,3	462,3
2003	209,6	21,3	4,1	130,9	15,7	9,8	2,3	14,8	20,1	0,4	429,0
2004	204,2	20,5	4,2	133,0	16,3	9,8	2,4	15,0	20,9	0,5	426,8
2005	191,8	19,3	3,9	133,3	15,5	9,1	2,3	14,1	20,3	0,6	410,4
2006	168,6	17,3	3,8	120,2	15,1	8,8	2,3	13,6	20,0	0,7	370,4
2007	160,4	17,6	3,9	117,7	15,4	8,7	2,3	13,5	20,4	0,8	360,6
2008	150,4	17,6	3,9	119,1	15,6	8,5	2,3	13,5	20,9	0,8	352,6
2009	131,0	16,9	3,7	104,8	14,6	7,6	2,1	12,4	19,7	0,7	313,4
2010	126,1	18,6	4,1	114,7	15,1	7,6	2,2	12,8	20,5	0,6	322,0