

Pós-Graduação em Ciência da Computação

“An Integrated Cost Model for Product Line Engineering”

by

Jarley Palmeira Nóbrega

M.Sc. Dissertation

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE , March 2008

 UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS‐GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

JARLEY PALMEIRA NÓBREGA

“An Integrated Cost Model for Product Line Engineering”

Este trabalho foi apresentado à Pós-Graduação em Ciência
da Computação do Centro de Informática da Universidade
Federal de Pernambuco como requisito parcial para obtenção
do grau de Mestre em Ciência da Computação.

A master dissertation presented to the Federal University of
Pernambuco in partial fulfillment of the requirements for the
degree of M.Sc. in Computer Science.

 ADVISOR: SILVIO ROMERO DE LEMOS MEIRA

 CO-ADVISOR: EDUARDO SANTANA DE ALMEIDA

RECIFE, MARCH 2008

Nóbrega, Jarley Palmeira

An integrated cost model for product line
engineering / Jarley Palmeira Nóbrega. – Recife : O
Autor, 2008.
 144 p. : il., fig.,tab.

 Dissertação (mestrado) – Universidade Federal
de Pernambuco. CIn. Ciência da Computação, 2008.

 Inclui bibliografia, glossário e apêndice.

 1. Engenharia de software. I. Título.

 005.1 CDD (22.ed.) MEI2008-059

This work is dedicated to my loving wife, Carol, my little son, Guilherme, and to
my parents and sister, Januir, Céu and Jane.

cklowledgements

In the text of this dissertation the term worthwhile is used many times to

express a situation where an investment is indicated. Considering my master

studies an investment itself, I would like to say: it was worthwhile for my life!

In the long road to conclude this work I would like to thank a lot of

persons and entities that made their best to support me in this journey.

 I would like to thank the RiSE group to give me the support and the space

to discuss the aspects that were useful to complete my work. In special, the guys

whom I have the honor of working together: Bart, Ana Paula, Fred, Vinícius,

Alexandre Álvaro, Alexandre Martins, Rodrigo, Ednaldo, Lica and Kellyton

(sorry if I forgot someone).

 I would like to thank the people of SERPRO for giving me the time

necessary to develop my master activities. In special, I am thankful to Mônica

Falcão, Reinaldo Soares and João Veloso for recognizing the importance of my

work for SERPRO.

 I am very grateful to the people of Universidade Salgado de Oliveira due

to the incentives for my work, in special Mêuser Valença and Eleonora Oliveira

for the support during these last years.

 My special thanks to the professors Carlos Ferraz, Patrícia Tedesco and

Flávia Barros. Your classes were very important to my background knowledge,

and of course, I had a good time studying your lessons.

A

 There are two persons that I have special thanks. The first one, my

advisor and guru, Sílvio Meira with his peculiar vision of the world. His life has

been an inspiration for my professional career (and I am not outsourced my

career in a public job!). I am proud to be his student. The second person is my

co-advisor, Eduardo Almeida, for his patience in giving me the directions for my

work. Eduardo’s work for RiSE group is a real proof that is possible to transform

a dream in a real thing.

I would like to thank my parents, Januir and Céu, to teach me the

importance of a good education in my life. I promise you both that I will do the

same for my son.

This work is dedicated to the most important persons of my life: my

beloved wife, Carol, for her love and patience with me during my master studies

period. It would be impossible to finish my work without her incentive. For my

son, Guilherme, that changed my life with his birth. All the effort that your

father spent in this work was worthwhile because of you.

Finally, I would like to thank God for giving me the serenity and health to

support the pressure of writing this work. In the end, You never abandoned me!

Jarley Palmeira Nóbrega

Recife (PE)

March 2008

After a while you learn the subtle difference
Between holding a hand and chaining a soul,

And you learn that love doesn't mean leaning
And company doesn't mean security.

And you begin to learn that kisses aren't contracts
And presents aren't promises,

And you begin to accept your defeats
With your head up and your eyes open
With the grace of a woman, not the grief of a child,

And you learn to build all your roads on today
Because tomorrow's ground is too uncertain for plans
And futures have a way of falling down in mid-flight.

After a while you learn...
That even sunshine burns if you get too much.

So you plant your garden and decorate your own soul,
Instead of waiting for someone to bring you flowers.

And you learn that you really can endure...

That you really are strong

And you really do have worth...

And you learn and learn...

With every good-bye you learn.

Jorge Luís Borges in You Learn

bstract

In the software development community, the process of using existing artifacts

rather than building them from scratch – generally known as software reuse –

has been advanced as a way in which the problems associated with cost and

schedule overruns can be avoided. Despite the potential rewards from an

effective reuse program, it appears that its large-scale adoption is not

particularly prevalent. Among the factors that inhibit reuse adoption there are

the economic obstacles faced by organizations, which are concerned with the

cost related to develop software for reuse and with reuse. Currently, the

decisions concerning large-scale reuse are often related with an economic

viewpoint, since the development of software to be reusable can be considered

as an investment. Moreover, the adoption of a software product line in a reuse

context comes up with some inhibitors, such as the application of cost models in

a restricted way, the lack of an investment analysis strategy, and the fact that a

few cost models have a reuse scenario-based approach. In this context, this

work presents an integrated cost model for product line engineering in order to

help the decisions concerning reuse investment. The foundations of the model

were based on an extensive survey on cost models for software reuse and its

extension to the product line approach. The model presents the definition of a

set of cost and benefits functions, the description of reuse scenarios for product

line engineering, and an investment analysis strategy. In addition, a simulation

model based on the Monte Carlo method was proposed for simulating the reuse

scenarios. Finally, this work discusses the results of a case study in the context

of a real software development environment where the model was applied.

Keywords: Software Reuse, Cost Models, Software Product Line, Investment

Analysis, Monte Carlo Simulation, Software Economics.

A

esumo

Dentro da comunidade de desenvolvimento de software, o processo de reutilizar

artefatos ao invés de construí-los do zero – normalmente conhecido como reuso

de software – tem se mostrado uma maneira efetiva de evitar os problemas

associados ao estouro de orçamentos e cronogramas de projeto. Apesar do

imenso potencial, a adoção de reuso em larga escala ainda não prevalece dentro

das organizações. Entre os fatores que contribuem para isso, estão os

obstáculos econômicos enfrentados pelas empresas, com uma clara preocupação

sobre os custos para desenvolver software para e com reuso. Atualmente, as

decisões relacionadas com reuso são tratadas sob um ponto de vista econômico,

devido ao fato do desenvolvimento de software reutilizável ser considerado

pelas organizações como um investimento. Além disso, a adoção de linhas de

produto de software dentro desse contexto traz à tona alguns inibidores de

reuso, como por exemplo, a aplicação dos modelos de custo para reuso de forma

restrita, a falta de uma estratégia para a análise de investimentos, e o fato que

poucos modelos de custo possuem uma abordagem baseada na utilização de

cenários de reuso. Nesse contexto, esse trabalho apresenta um modelo

integrado de custo para engenharia de linhas de produto, com o objetivo de

auxiliar as organizações em seus processos de tomada de decisões na avaliação

de investimentos em reuso. Os fundamentos para o modelo foram baseados em

uma vasta pesquisa sobre modelos de custo para reuso e sua especialização para

linhas de produto de software. O modelo apresenta a definição de funções de

custo e benefícios, cenários de reuso e uma estratégia de investimento para

linhas de produto. Também é apresentado um modelo de simulação baseado na

técnica de Monte Carlo. Por último, um estudo de caso discute os resultados de

R

dentro do contexto de um projeto real de desenvolvimento de software, onde o

modelo foi aplicado.

Palavras-chave: Reuso de Software, Modelos de Custo, Linha de Produto de

Software, Análise de Investimento, Simulação de Monte Carlo, Economia de

Software.

able of Contents

ACKNOWLEDGEMENTS.. IV

ABSTRACT .. VII

RESUMO ..VIII

TABLE OF CONTENTS..X

LIST OF FIGURES ..XIII

LIST OF TABLES .. XIV

LIST OF ACRONYMS ... XV

1. INTRODUCTION..1

1.1. MOTIVATION .. 1
1.2. PROBLEM STATEMENT.. 3
1.3. OVERVIEW OF THE PROPOSED SOLUTION ... 3

1.3.1. Context.. 5
1.4. OUT OF SCOPE .. 6
1.5. STATEMENT OF THE CONTRIBUTIONS ... 7
1.6. ORGANIZATION OF THE DISSERTATION... 8

2. KEY DEVELOPMENTS IN THE FIELD OF SOFTWARE REUSE COST
MODELS .. 10

2.1. INTRODUCTION ... 10
2.2. MOTIVATION .. 11
2.3. DEFINITIONS... 11
2.4. BASIC FEATURES .. 12

2.4.1 Investment Cycles .. 13
2.4.2 Cost Factors .. 15
2.4.3 Economic Functions .. 16
2.4.4 Viewpoints ... 18
2.4.5 Reuse Organizations.. 20
2.4.6 Assumptions... 21

2.5. CLASSIFICATIONS ... 22
2.6. STATE-OF-THE-ART.. 23
2.7. MODELS COMPARISON ... 28
2.8. CHAPTER SUMMARY... 31

T

3. SOFTWARE PRODUCT LINE COST MODELS: STATE-OF-THE-ART..... 32

3.1. INTRODUCTION ... 33
3.2. SOFTWARE PRODUCT LINES ... 34

3.2.1 Domain Engineering ... 35
3.2.2 Product Development .. 37
3.2.3 Management .. 37
3.2.4 Product Line Engineering ... 38

3.3. A SURVEY ON COST MODELS FOR SOFTWARE PRODUCT LINE 38
3.3.1. Poulin’s Cost Model for Software Product Lines... 39
3.3.2. ABC Approach.. 40
3.3.3. Schmid Model ... 41
3.3.4. Convergys Experience .. 41
3.3.5. Tomer Model .. 44
3.3.6. Constructive Product Line Investment Model (COPLIMO)......................... 45
3.3.7. Structured Intuitive Model for Product Line Economics (SIMPLE) 46
3.3.8. Software Cost Estimation Model for Product Line Engineering (SoCoEMo-
PLE).. 51
3.3.9. Quality-based SPL Cost Estimation Model (qCOPLIMO) 52

3.4. TOWARDS AN EFFECTIVE SOFTWARE PRODUCT LINE COST MODEL 53
3.4.1. Costs and Benefits Functions ... 53
3.4.2. Reuse Scenarios.. 54
3.4.3. Investment Analysis .. 54
3.4.4. Approaches for Implementation ... 55

3.5. SUMMARY OF THE STUDY... 56
3.6. CHAPTER SUMMARY... 57

4. INCOME: INTEGRATED COST MODEL FOR PRODUCT LINE
ENGINEERING .. 58

4.1. INTRODUCTION ... 58
4.2. OVERVIEW OF THE MODEL ... 60

4.2.1. Objectives ... 63
4.2.2. Model Assumptions... 64

4.3. THE FOUNDATIONS... 65
4.3.1 Integrated Cost Model for Software Reuse ... 66
4.3.2 Structured Intuitive Model for Product Line Economics (SIMPLE) 68
4.3.3 Monte Carlo Simulation .. 69

4.4. ELEMENTS OF THE MODEL.. 70
4.4.1. Cost Factors ... 70
4.4.2. Viewpoints .. 75
4.4.3. Investment Analysis .. 80
4.4.4. Simulation Model.. 83

4.5. USING THE MODEL ... 85
4.5.1. Establishing an Organizational Scenario .. 87
4.5.2. Functions Adjustments.. 88
4.5.3. Model Revision ... 88
4.5.4. Cost Factors Estimation ... 89
4.5.5. Model Population ... 90
4.5.6. Benefits Analysis... 90
4.5.7. Economic Analysis.. 91
4.5.8. Product Line Investment Evaluation .. 92

4.5.9. Cost Configuration Establishment ... 92
4.6. CHAPTER SUMMARY... 93

5. CASE STUDY .. 96

5.1. INCOME CONTEXT .. 96
5.2. EVALUATION TECHNIQUES... 97
5.3. INCOME EVALUATION .. 98

5.3.1. Definition.. 98
5.3.2. Planning ... 101
5.3.3. Project Description .. 104
5.3.4. Instrumentation... 105
5.3.5. Operation.. 106
5.3.6. Analysis and Interpretation .. 106

5.4. LESSONS LEARNED... 118
5.5. CHAPTER SUMMARY... 119

6. CONCLUSIONS..120

6.1. RESEARCH CONTRIBUTIONS ... 120
6.2. RELATED WORK... 122
6.3. FUTURE WORK ... 122
6.4. ACADEMIC CONTRIBUTIONS... 124
6.5. CONCLUDING REMARKS ... 125

REFERENCES ...126

APPENDIX A. MONTE CARLO SIMULATION..138

ist of Figures

FIGURE 1.1 – INTEGRATED COST MODEL FOR PRODUCT LINE ENGINEERING ...4

FIGURE 1.2 – RISE FRAMEWORK FOR SOFTWARE REUSE6

FIGURE 2.1 – INVESTMENT CYCLES.. 15

FIGURE 2.2 – COST PROPAGATION INTO VIEWPOINTS ..20

FIGURE 2.3 – REUSE COST MODELS TIMELINE..28

FIGURE 3.1 – SOFTWARE PRODUCT LINE ACTIVITIES. ...35

FIGURE 3.2 – CORE ASSET DEVELOPMENT...36

FIGURE 3.3 – PRODUCT DEVELOPMENT. ..37

FIGURE 3.4 – RELATIONSHIPS AMONG CATEGORIES OF PRACTICE AREAS.38

FIGURE 3.5 – SIMPLE GENERAL SCENARIO. ...47

FIGURE 3.6 – QCOPLIMO STRUCTURE. ..52

FIGURE 4.1 – INTEGRATED COST MODEL FOR PRODUCT LINE ENGINEERING. 61

FIGURE 4.2 – INCOME META-MODEL...62

FIGURE 4.3 – INCOME ACTIVITIES..86

FIGURE 4.4 – COST ESTIMATIONS... 91

FIGURE 5.1 – DOMAIN ENGINEERING VIEWPOINT BALANCE............................. 110

FIGURE 5.2 – PL FIRST GENERATION BALANCE.. 111

FIGURE 5.3 – PL SUBSEQUENT GENERATIONS BALANCE112

FIGURE 5.4 – CORPORATE ENGINEERING BALANCE ...112

FIGURE 5.5 – NPV FOR PRODUCT ENGINEERING ...114

FIGURE 5.6 – ROI FOR PRODUCT ENGINEERING VIEWPOINT115

FIGURE 5.7 – SIMULATION RESULTS...117

L

ist of Tables

TABLE 2.1 – REUSE COST MODEL COMPARISON ..30

TABLE 3.1 – A SUMMARY OF FEATURES OF PL COST MODELS 57

TABLE 4.1 – VIEWPOINTS AND STAKEHOLDERS..76

TABLE 4.2 – UNCERTAIN VARIABLES AND VIEWPOINTS IMPACTED...................84

TABLE 4.3 – COST FACTORS FROM THE EXAMPLE ..89

TABLE 4.4 – INCOME EQUATIONS...94

TABLE 4.5 – A SUMMARY OF FEATURES OF PL COST MODELS..............................94

TABLE 5.1 – PROJECT NUMBERS ... 105

TABLE 5.2 – PRODUCTS, EFFORT AND NUMBER OF ANNUAL UPDATES 107

TABLE 5.3 – PRODUCTS COST PARAMETERS...108

TABLE 5.4 – CORE ASSET BASE COST PARAMETERS..108

TABLE 5.5 – DOMAIN ANALYSIS COST PARAMETERS..109

TABLE 5.6 – ORGANIZATIONAL COST PARAMETERS...109

TABLE 5.7 – PAYBACK VALUES FOR PRODUCT ENGINEERING VIEWPOINT115

L

ist of Acronyms

Terms Description

ARVB Average Return on Book Value

COCOMO Constructive Cost Model

COPLIMO Constructive Product Line Investment Model

COTS Component Off-the-Shelf

InCoME Integrated Cost Model for Product Line Engineering

IRR Internal Rate of Return

GQM Goal-Question-Metric

NATO North Atlantic Treaty Organization

NPV Net Present Value

PB Payback Value

PH Persons-Hour

PI Profitability Index

PLE Product Line Engineering

qCOPLIMO Quality-based SPL Cost Estimation Model

RCA Reuse Cost Avoidance

RCR Relative Cost of Reuse

RCWR Relative Cost of Writing for Reuse

RiSE Reuse in Software Engineering group

ROI Return on Investment

SD Start Date (of an investment)

SEI Software Engineering Institute

SIMPLE Structured and Intuitive Model for Product Line Economics

SLOC Size of Lines of Code

SoCoEMo-PLE Software Cost Estimation for Product Line Engineering

SPL Software Product Line

UML Unified Modeling Language

L

Introduction

During the last decades the software development community has been

studying the adoption of systematic reuse processes as a key factor for

significantly improving software quality and productivity. In this context, a

growing number of software development organizations are adopting

approaches that emphasize proactive reuse, interchangeable components, and

planning cycles, in order to construct high-quality products faster and cheaper

(McGregor et al., 2002). A set of standard methods, known as software product

lines, has been developed around these approaches (Clements et al., 2001).

 However, successful application of such processes is intrinsically

associated with the capability of the organizations in measuring their progress

and identifying the most effective reuse strategies. The lessons learned on

applying this approach highlight that the software community needs more

quantitative data to support software product lines adoption (Northrop, 2002).

Currently, the organizations give an “investment level“ to product line

engineering, and a new problem arises with it: the decision makers want clear

and accurate numbers in their business cases.

Thus, the instantiation of this problem is the main subject of this

dissertation, which will discuss it in detail, beginning with the problem

formulation, passing through the state-of-the-art of existing solutions, ending

with the current proposal and its validation.

1.1. Motivation
In the software development community, the process of using existing artifacts

rather than building them from scratch – generally known as software reuse

(Krueger, 1992) – has been advanced as a means in which the problems

associated with cost and schedule overruns can be avoided. There are several

reports describing the benefits of software reuse within a large set of

organizations (Margano et al., 1992), (Poulin et al, 1993), (Lim, 1994),

(Brownsword et al., 1996), (Lim, 1998), (Wiles, 1999), (Mili et al., 2001),

1

Chapter 1 – Introduction

2

(Poulin, 2006), (Muthig et al., 2006). The benefits potentially achieved by

software reuse include reduced development time and cost, improved software

quality, increased overall productivity, increased level of knowledge sharing,

improved maintainability of applications, easier adoption of standards, among

others (Rothenberger et al., 2002).

Despite the potential rewards from an effective reuse program, it appears

that its large-scale adoption is not particularly prevalent. Among the factors that

inhibit reuse adoption we can highlight the economic obstacles faced by

organizations (Sametinger, 1997), which are concerned with the cost related to

develop software for reuse and with reuse (Poulin et al., 1993). In general, the

development of software to be reusable in future projects is more expensive

than developing it for a single use (Poulin, 1997a).

Currently, the decisions concerning large-scale reuse are often related

with an economic viewpoint, since the development of software to be reusable

can be considered as an investment (Wiles, 1999). In this context, cost models

for software reuse can help the organizations to make decisions concerning

reuse investment, including whether or not to invest in a reuse program,

whether to choose a specific type of reuse over another, and whether not

consider reuse and invest in some other type of technique or process.

Frequently, these decisions are strongly related with the financial evaluation of

a reuse scenario – a development plan that describes which features should be

developed in a specific period of interest (Schmid, 2003).

In the literature, there are many studies on the field of software reuse

economics , and a large number of cost models have been proposed (Bollinger et

al., 1990), (Barnes et al., 1991), (Gaffney et al., 1992), (Margano et al., 1992),

(Schimsky, 1992), (Poulin et al., 1993), (Malan et al., 1993), (Frakes et al.,

1994a), (Kain, 1994), (Lim, 1994), (Boehm et al., 1995), (Favaro, 1996), (Mili,

1996), (Devanbu et al., 1996), (Favaro et a., 1998), (Wiles, 1999), (Mili et al.,

2000), (Nazareth et al., 2004).

However, when we are considering the adoption of a product line in a

reuse context some issues arises: (i) the existing cost models can be applied

only in a restricted way, since they do not reflect some fundamental

assumptions for that approach (Böckle et al., 2004), i.e., they do not express the

Chapter 1 – Introduction

3

cost nature of a product line, which the development perspective is product-

based, in opposition to the basic cost models that have a component-based

viewpoint (Schmid, 2003); (ii) the existence of a few economic models dealing

with product line engineering compared with the number of basic reuse cost

models (Poulin, 1997b), (Cohen, 2003), (Peterson, 2004), (Boehm et al., 2004),

(Clements et al., 2005). (Lamine et al., 2005); (iii) some of the existing cost

models for product line engineering can be applied only to estimate costs

savings, lacking of an investment analysis strategy (Peterson, 2004), (Clements

et al., 2005); (iv) a few models have a reuse scenario-based approach in order

to evaluate the dynamic situations that can occur in a product line; and (v) none

of the currently available models includes in its definition a formal simulation

model in order to investigate the uncertainty that can exist in input parameters

of reuse scenarios (Muthig et al., 2006).

1.2. Problem Statement
According to the issues gathered from the discussion of the previous section, the

work described in this dissertation focuses in achieving the following goal:

This work defines an integrated cost model for software product line

engineering to perform investment analysis for a set of reuse scenarios in

order to help the stakeholders of an organization in their decision-making

tasks.

1.3. Overview of the Proposed Solution
In order to achieve the goals stated in the previous section, the Integrated Cost

Model for Product Line Engineering (InCoME) is proposed. A summarized view

of InCoME is presented in Figure 1.1. Accordingly, the model is based on the

following foundations1:

1 In Chapter 4 all these elements are discussed in details

Chapter 1 – Introduction

4

INTEGRATED COST MODEL FOR PRODUCT LINE ENGINEERING

Cost Factors

Viewpoints

Investment Analysis

Simulation
Model

ORGANIZATIONAL

STAND-ALONE

CORE ASSET
BASE

REUSE LEVEL

PRODUCT
EVOLUTION

UNIQUE PARTS

ASSET
EVOLUTION

NPV ROI PAYBACK

DOMAIN
ENGINEERING

REUSE
SCENARIOS

PRODUCT
ENGINEERING

CORPORATE
ENGINEERING

REUSE
SCENARIOS

REUSE
SCENARIOS

Cost
Estimation

Benefit
Estimation

Economic
Estimation

Figure 1.1 – Integrated Cost Model for Product Line Engineering (InCoME)

• Investment Analysis. InCoME presents a set of economic functions in

order to analyze an investment in a product line. The equations used by

the model are known by economics community and its application in a

reuse cost model was influenced by the work described by Favaro et al.

(Favaro et al., 1998). This work defines functions to calculate the Net

Present Value (NPV), Return on Investment (ROI), and other financial

estimations for software reuse.

• Viewpoints. The model defines three viewpoints in order to provide

different visions of an investment in a product line, according to the

stakeholders associated with each viewpoint. This strategy was

Chapter 1 – Introduction

5

influenced by the model defined by Mili et al. (Mili et al., 2001) which

states that a reuse organization elaborates on four engineering cycles that

propagates costs and benefits into each other.

• Reuse Scenarios. The model addresses the benefits in adopting a

product line by the definition of reuse scenarios. This approach is based

on the cost models defined by Schmid (Schmid, 2003), Peterson

(Peterson, 2004) and Clements et al. (Clements et al., 2005) which could

be useful to model the dynamic situations that can occur in a product

line.

• Cost Factors. The InCoME cost factors are based on the model defined

by Clements et al. (Clements et al., 2005), which includes functions to

estimate the most relevant cost drivers for product line engineering.

Furthermore, the approach used in the definition of InCoME to derive

the cost equations of component engineering cycle was influenced by Mili

et al. (Mili et al., 2001) which defines the lowest level of granularity for

reuse cost.

• Simulation Model. InCoME presents a simulation model for reuse

scenarios in order to investigate the sensitivity of the output computed by

the model with respect to changes in its input data. This approach was

based on the work described by Muthig et al. (Muthig et al., 2006) which

uses the technique of Monte Carlo simulation to handle uncertainty for

ROI estimations of a product line.

1.3.1. Context
This work is part of a broader reuse initiative promoted by the Reuse in

Software Engineering (RiSE)2 (Almeida et al., 2004). According to (Almeida,

2007): “RiSE’s goal is to develop a robust framework for software reuse in

order to enable the adoption of a reuse program. The proposed framework has

two layers, as shows in Figure 1.2. The first layer (on the left side) is formed by

best practices related to software reuse. Non-technical aspects, such as

education, training, incentives, program to introduce reuse, and

organizational management are considered. This layer constitutes a

2 http://www.rise.com.br/research

Chapter 1 – Introduction

6

fundamental step before the introduction of the framework in organizations.

The second layer (on the right side), is formed by important technical aspects

related to software reuse, such as processes, environment, and tools.”

Figure 1.2 – RiSE Framework for Software Reuse

According to Figure 1.2, the RiSE project addresses several reuse aspects

not included in the scope of this dissertation, such as software reuse processes

(Almeida, 2007), component repository management (Burégio, 2006) and

component certification (Alvaro et al., 2006), besides other tools proposed by

the project, including domain analysis tools (Lisboa et al., 2007), reverse

engineering (Brito, 2007) and component search engines (Garcia et al., 2006),

(Mascena, 2006), (Vanderlei et al., 2007).

These efforts are coordinated and will be integrated in a full-fledged

enterprise scale reuse solution. The role of InCoME in the RiSE project is to

provide a model to evaluate an investment within a product line context, which

is included in the Software Reuse Process layer.

1.4. Out of Scope
As cited in the previous sections, since InCoME is part of a broader context, a

set of related aspects are left out of this work scope. Moreover, we recognized

that there is a set of other directions that were discarded in this dissertation due

to scope limitations:

• Reuse Process. A cost model for software product line is a subject

strongly related with the process in which it is inserted (Clements et al.,

2005). Since the RiSE group is committed with the definition of a robust

Chapter 1 – Introduction

7

reuse process (Almeida, 2007), this dissertation do not take into account

the definition of a product line engineering process. There are a set of

directions in this sense, including the frameworks defined by SEI

(Clements et al., 2004) and Fraunhofer Institute (Bayer et al., 1999).

• Intangible Benefits. InCoME focuses on evaluating reuse scenarios

performing an investment analysis according to the cost savings

computed by the model. In this sense, a set of intangible benefits

different of cost savings were not addressed by this work. The work

performed by Peterson (Peterson, 2004) has a set of research directions

in order to investigate intangible benefits, such as improved time-to-

market, market share, among others.

• Decision Model. According to Schmid (Schmid, 2003) an investment

analysis provided by a reuse cost model can be improved by the

management of the risks related with reuse adoption. In this sense, the

use of decision-making techniques, such as decision trees, can help

organizations in their product lines strategies. A direction for this

approach is shown in the work conducted by Schmid (Schmid, 2003),

which approaches the application of decision tree analysis in order to

mitigate the risks involved on investment decisions.

• Tool Implementation. The adoption of product line engineering by

software development organizations has led to the emergence of software

reuse tools and techniques (Krueger, 2007). It is known that an

automated tool can help in using a reuse cost model, as presented by Mili

et al. (Mili et al., 2001) in the implementation of archival and analysis

modules for their model. Some directions for tool implementation were

also given by Clements et al. as a list of features that can be added into

the tool. As cited previously, RiSE group has a research branch that

focuses on tool implementation and due to scope limitation this subject is

not discussed in this dissertation.

1.5. Statement of the Contributions
As a result of the work presented in this dissertation, the following

contributions can be enumerated:

Chapter 1 – Introduction

8

1. The extension of a study on the key developments in the field of software

reuse cost models, in an attempt to analyze this research area and

identify the next trends to follow;

2. A survey based on the state-of-the-art of software product line cost

models in order to understand and identify its strengths, weakness and

improvement opportunities;

3. The formal definition of an integrated cost model for product line

engineering, including its basic cost functions, viewpoints, reuse

scenarios, economic functions and a simulation model;

4. The definition, planning, operation, analysis, interpretation and

packaging of a case study, which evaluated the accuracy of the proposed

model.

 In addition, some intermediate results of this work can be found in the

literature, as follows:

• (Nóbrega et. al., 2006) Nóbrega, J.; Almeida, E. S.; Meira, S. R. L., “A

Cost Framework Specification for Software Product Lines

Scenarios”, in the Sixth Workshop on Component-Based Development

(WDBC), Recife, Brazil, 2006.

1.6. Organization of the Dissertation
The remainder of this dissertation is structured as follows.

 Chapter 2 surveys the origins of reuse cost models concepts and ideas,

features, classifications, and future directions for development in the area.

 Chapter 3 surveys the state-of-the-art on software product line cost

models, discussing its foundations, features, strengths and weakness, making a

comparison between them and highlighting the directions to create a basis for

the model defined in this work.

 Chapter 4 presents the InCoME, including its objectives, assumptions,

foundations, elements and a process to use it within an organization.

 Chapter 5 presents the InCoME evaluation, with its context, definition,

planning, operation, analysis, interpretation and packaging of the case study,

which evaluated the accuracy of the proposed model.

Chapter 1 – Introduction

9

 Chapter 6 summarizes the contributions of this work, presenting the

related work and directions for future researches.

 Appendix A describes the Monte Carlo simulation method, presenting

a formal definition of its algorithm.

Key Developments in
the Field of Software
Reuse Cost Models

In the literature, several cost models have been proposed for estimating,

predicting and analyzing the costs of software reuse. The importance of this

subject is related with the explosive growth of software demand, and reuse in

special, in conjunction with the perception that there is a software crisis in

progress (Gibbs, 1994), (Mili et. al., 2002).

The term software crisis has been raised earlier, during the NATO

Conference on Software Engineering (Naur et al., 1969), where concerns about

low development productivity, poor reliability, lack of user

acceptance and maintenance difficulties contributed for creating a set of

systematic approaches for dealing with this issues (Pressman, 2004).

The work presented by McIlroy (McIlroy, 1968) during the NATO

conference was the basis to establish the ideas of software reuse, which is

considered a means to solve the problems associated with cost and schedule

overruns (Learch, 1997), (Lim, 1998). In this context, this chapter surveys the

main aspects of cost models for software reuse, including their importance for a

systematic reuse adoption by organizations and a comparison among these

models.

2.1. Introduction
The correct estimation of costs and benefits for software development products

has been a bottleneck for a wide range of companies (Verhoef, 2005). While

financial economics is well established and applied in many areas, the use of

2

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

11

cost models it is not a trivial issue when considering the context of software

reuse approach. According to Frakes et al. (Frakes et al., 1994), economics is

one of the six factors that have direct impact on the adoption of software reuse,

and the effective use of cost models can increase this level of adoption by

helping organizations in their decision-making tasks.

2.2. Motivation
The activities of estimating, predicting and monitoring the costs of software

development life cycle are an important part of a software process.

 Within the context of software reuse, most decisions can be rationalized

in terms of economic considerations. Software reuse processes are intrinsically

dependent on the cooperation of many parts (Mili et al., 2001). Each part of a

process can have its goals quantified in economic terms and its achievement can

determine the success of the entire reuse program.

 The study of reuse cost models can highlights many aspects that have a

direct impact on the adoption of software reuse. Accurate software cost

estimation is critical to CEOs, project managers, developers, and, at last

instance, to the costumers. They can be used for generating request for

proposals, contract negotiations, scheduling, monitoring and control (Leung et

al., 2001). In general, cost models can help organizations to make decisions

concerning reuse investment. They enumerate reuse costs and benefits and

break down them into combinations of parameters and data that can determine

whether or not to invest in reuse (Wiles, 1999).

2.3. Definitions
The definition of a software reuse cost model can vary according to researchers

and their viewpoint.

Guerrieri et al. define a reuse cost model as a framework “to evaluate and

compute the profitability of a reusable asset” (Guerrieri et al., 1988). Gaffney &

Durek presents their definition as “the cost of developing software with reuse

relative to that of developing software without reuse” (Gaffney et al., 1992).

Frakes & Terry describe a reuse cost model as the one that “specifies a

relationship between (reuse) metrics” (Frakes et al., 1996). According to

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

12

Favaro, a reuse cost model is “a way of capturing economics benefits and costs

associated with a reuse program” (Favaro, 1996). Wiles & Bott define an

economic model for reuse as “mathematical formulae that predict whether or

not a reuse investment would be worthwhile” (Wiles et al., 1998). Mili et al.

defines a cost model as “a set of investment decisions on reuse activities

justified by an economic rationale” (Mili et al., 2000). Nazareth et al. considers

a reuse cost model the quantification of “the benefits accrued through a reuse

process, using standards costing techniques, comparing development without

reuse and development with reuse, moderated by its accompanying costs”

(Nazareth et al., 2004). Tomer et al. introduced cost model as “a systematic and

straightforward way of calculating the overall cost of various reuse

alternatives in order to select the one that is the most cost-effective” (Tomer et

al., 2004).

In this dissertation, the vision of Rothenberger et al. (Rothenberger et al.,

2004) for a software reuse cost model will be adopted:

 “A cost model for software reuse is the notation of the explicit costs and

benefits associated with a reuse program.”

This vision is adequate to the purpose of this dissertation, since we are

interested in the study of the features for reuse cost models in order to express

the costs and benefits that are related with the adoption of a reuse program.

2.4. Basic Features
Since of the late 80’s there has been a proliferation of software reuse cost

models. Even these models appear to be dealing with the same problem they

differ significantly from each other (Mili et al., 2000). In order to understand

the characteristics of a given cost model, it is important to understand the

characteristics of the reuse program on which the model is to be applied.

 According to the reuse program, there is a set of features that distinguish

among these different cost models (Mili et al., 2001). These features are

presented in the next sections.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

13

2.4.1 Investment Cycles
The most of decisions related with software reuse can be modeled as Return of

Investment (ROI) analysis. ROI typically measures the relation between the

costs savings and the cost of investment (Böckle et al., 2004). It also can be

expressed as the following equation (Boehm et al., 2003) (Erdogmus et al.,

2004):

ROI = (benefits – costs) / costs (Equation 1)

Within the context of a software reuse process, there are four distinct

investment cycles (Mili et al., 2001): the Corporate Investment Cycle, the

Domain Engineering Investment Cycle, the Application Engineering

Investment Cycle, and the Component Engineering Cycle. Each of these

cycles provides a specific economic rationale and they can be expressed by a

variety of economic functions. The main feature of a generic reuse cost model is

the specification on how these investment cycles will be dependent from the

information generated internally. This dependency of information propagates

the cost values from one cycle to the next.

• Corporate Investment Cycle. At this cycle, the costs can be quantified

by the consolidation of reuse infrastructure and the costs to initiate a

reuse program. It includes purchasing and installing a repository to hold

reusable assets; specialized personnel required hiring and training;

operational and physical modifications within the corporation; and, the

cost of initially populating the reuse library. It also includes the cost to

adapt the organization process in order to accommodate the new

activities that will be performed within the reuse program. In addition,

all domain engineering costs of all projects must be considered as

episodic costs. This cycle incorporates all benefits generated by all

application engineering cycle activities.

• Domain Engineering Investment Cycle. It addresses the costs of

domain analysis plus component engineering costs, which involves the

cost to develop and catalog assets for reuse, including the cost to perform

domain engineering activities, such as variability and commonalities

features for each software component. The term domain is used to

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

14

describe a specialized body of knowledge, an area of expertise, or a

collection of related functionality (Clements et. al, 2001). The term

domain engineering expresses the development of the core asset base

and an acquisition strategy (Clements et al., 2001). Its benefits are

calculated by the sum of all benefits generated during the development of

the components used as part of the domain, according to its frequency of

reuse (Mili et al., 2001).

• Application Engineering Investment Cycle. This cycle has its costs

defined by reuse adoption costs, which involves training activities,

operational impact of reuse process and tools acquisition. According to

Clements et al. (Clements et. al, 2001), the term application engineering

represents the development of a product by using the core asset base.

Other episodic costs must consider the operational risks on using

significant software components and the purchase of them in a third-part

market. Its benefits can be estimated by the costs savings achieved by

using reusable assets for the development of a new software product

rather than writing custom code for the same set of assets on the same

product.

• Component Engineering Investment Cycle. At this cycle, costs are

calculated by the development of assets for reuse and the library

overhead, which includes costs for component certification and library

insertion, according to its quality model attributes (Álvaro et al., 2006).

Episodic costs are calculated by library operation and maintenance

during a specific period of interest. Its benefits are gained from

productivity increasing, which can be estimated by the difference

between custom development and reuse cost, and quality level

increasing, which is expressed by the maintenance costs over the lifetime

of reusable assets.

 A summary of the investment cycles is presented in Figure 2.1.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

15

Figure 2.1 – Investment Cycles (Mili et al., 2001)

2.4.2 Cost Factors
According to a given investment cycle and a given set of economic functions it is

possible to define the aspects of the reuse decision that will be taken into

account. At general, investments can be quantified by six cost factors (Mili et al.,

2001): investment cycle, discount rate, start date, investment costs, episodic

benefits, and episodic costs.

• Investment Cycle. Denoted by Y, this factor is measured in number of

years and counted from a start date;

• Discount Rate. Denoted by d, it is an abstract quantity that reflects the

time value of money within a year. If a unit of money (e.g. Brazilian Real,

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

16

American Dollar) is spent today, it can get back at least 1 + d units one

year after a given start date.

• Start Date. Denoted by SD, it means the date where the investment

starts and the initial costs are incurred.

• Investment Costs. Denoted by IC, this factor is measured in persons-

month (PM) and it expresses the amount of effort required to start an

investment in a given start date (SD). Persons-month has become a

standard metric to specify the effort required to build software [also

known as man-month (Brooks, 1995)]. This cost factor can also be

measured in monetary terms or another measure of software size, such

function points (Albrecht, 1979). A conversion of these alternative

measures to persons-month is strongly recommended.

• Episodic Benefits. Let y a year, where Y+SDy+SD ≤≤1 , with SD as

the start date of the investment and Y as the investment cycle. This factor

is denoted by B(y) and expressed in persons-month. Applying B to the

year of SD implies in () 0=SDB .

• Episodic Costs. Let y a year, where Y+SDy+SD ≤≤1 , with SD as the

start date of the investment and Y as the investment cycle. This factor is

denoted by C(y) and expressed in persons-month. Applying C to the year

of SD implies in () ICSDC = , where IC is the investment cost starting in

SD.

2.4.3 Economic Functions
Favaro (Favaro, 1996) identifies five different economic functions that can be

applied on a reuse cost model: Net Present Value, Payback, Average Return on

Book Value, Internal Rate of Return, and Profitability Index.

• Net Present Value, denoted by NPV, is measured in persons-month

and can be defined by the following equation:

∑ −Y

=z
zd)+(

z)+C(SDz)+B(SD=NPV
0 1

 (Equation 2)

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

17

where SD is the start date of the investment, d is the discount rate, Y the

investment cycle in years, B is the benefit function and C is the cost

estimation function. An investment is valuable whenever the NPV

exceeds zero. This leads directly with the concept of the present value

of a predicted cash flow (Favaro et al., 1998).

• Payback, denoted by PB, is defined as the shortest investment cycle that

makes the NPV a positive number. It can be expressed by the smallest

integer value x in Y such that

Y,xNx ≤≤∈∃ ,0 0
10

≥
−∑

Y

=z
zd)+(

z)+C(SDz)+B(SD
 (Equation 3)

where SD is the start date of the investment, d is the discount rate, Y the

investment cycle in years, B is the benefit function and C is the cost

estimation function. An investment is worthwhile if PB is smaller than

the amount of time necessary to amortize the investment.

• Average Return on Book Value, denoted by ARBV, is defined in

function of an amortization schedule of the investment cost over the

investment cycle. It can be used considering a software component as a

capital asset. To calculate ARBV it is necessary to define an amortization

function, Am(y) that satisfies∑
Y

z=
IC=z)+Am(SD

1
, where SD is the start

date of the investment cost IC for an investment cycle Y. The ARBV is

given by the following equation:

∑ −−
×

×

Y

=z
zd)+(

z)+Am(SDz)+C(SDz)+B(SD
ICY

=ARBV
1 1

1

(Equation 4)

where SD is the start date of the investment, d is the discount rate, Y the

investment cycle in years for the investment cost IC, B is the benefit

function, C is the cost estimation function and Am the amortization

function starting in SD. Although Favaro & Mili discourage the use of

this factor, due to the subjective accounting distortions, it is possible to

assign () Y+SDy+SD,y,
Y
ICyAm ≤≤∀= 1 . The ARBV function means that

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

18

if the book rate of return meets some target defined by a manager or

financial analyst (e.g. 20% of profitability a year) then the capital can be

invested for a set of assets (in the reuse context, the assets can be

software components).

• Internal Rate of Return, denoted by IRR, defines the value of the

discount rate d that makes the 0=NPV . An investment is worthwhile if

IRR is smaller than the corporate d.

• Profitability index value, denoted by PI, is defined by the following

equation:

∑ −
×

Y

=z
zd)+(

z)+C(SDz)+B(SD
IC

=PI
1 1

1
 (Equation 5)

where SD is the start date of the investment, d is the discount rate, Y the

investment cycle in years for the investment cost IC, B is the benefit

function and C is the cost estimation. This equation calculates a pro-rate

of the potential profit over the investment cost (IC). An investment is

valuable if PI is greater than 1 and it is more attractive when PI grows.

As an extension of these factors, the Return on Investment (ROI) can be

redefined as a relation between the net present value NPV and the investment

costs IC:

IC
NPV=ROI (Equation 6)

2.4.4 Viewpoints
Within the context of software reuse program, there are many stakeholders

involved, with different roles concerning the economic analysis of the entire

program (Mili et al., 2000). Each of them has a particular vision of what will

influence the interpretation of the economic functions. The main roles identified

in the literature includes corporate managers, domain engineering teams,

application engineering teams, individual producers of reusable assets, quality

assurance engineers, and so on.

Each stakeholder has a different ROI equation, according to the cost

factors presented previously. Only two of these factors can be considered

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

19

uniform for an entire organization: Y and d. The remaining cost factors [(IC,

B(y) and C(y)] are cascaded from one investment cycle to the next. The cost

propagation can be observed in Figure 2.2

The different viewpoints are related with investment cycles, and they are

summarized in the following:

• Component Engineering Viewpoint. The investment decision that

can be made in this viewpoint is whether or not to develop a reusable

asset, considering how much it cost to develop it, how much savings

project team will achieve by reusing it, and the frequency of use expected

for future projects;

• Application Engineering Viewpoint. The investment decision here

is whether or not to adopt reuse in a given development project,

considering the alignment between the project needs and the available

reusable assets. One point to consider here is the level of reuse adoption

that involves the project;

• Domain Engineering Viewpoint. This decision evaluates whether or

not to initiate a domain engineering activity, considering how much

development effort is needed for a specific domain and how much effort

is needed for domain analysis and design activities;

• Corporate Viewpoint. The investment decision of this viewpoint is

whether or not to initiate a reuse program, considering the expected

infrastructure costs, the operational impact of reuse adoption, and the

expected volume of development activity.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

20

Figure 2.2 – Cost Propagation into Viewpoints (Mili et al., 2001)

2.4.5 Reuse Organizations
Many works in literature have identified different types of reuse for an

organization. Caldiera & Basili (Caldiera et al., 1991), Fafchamps (Fafchamps,

1994) and Coulange (Coulange, 1998) had summarized these types of reuse

organizations:

• Lone Producer. Provides reuse services to at least two consumers

teams. Its basic role is to design, develop and maintain reusable

components;

• Nested Producer. In this type of organization each product team has a

member dedicated for providing reuse services and expertise;

• Pool Producer. This organization provides two or more teams

collaborating to both produce and share components;

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

21

• Team Producer. This type has an organizational structure based on a

component producer team division. All producers team have as a target

to interact with all consumers team to provide components on demand;

• Experience factory. This type of organization develops and packages

software components upon demand. It also creates and maintains a

component repository for future projects.

According to Mili (Mili et al., 2001), a generic reuse cost model can be fully

influenced by the organization reuse type. As a result, a set of features appear on

the study of these types:

• A clear separation between the producer and consumer teams;

• A well-defined pricing and cost structure between producer and

consumer teams;

• A pricing structure to acquire assets from a third-part;

• A reward structure, in order to give some credit to the producers

according to the volume of assets produced and the frequency of that

assets are reused by the consumer teams;

• A well-defined metrics measurements policy; and

• A well-defined policy to track costs and library insertion procedures.

2.4.6 Assumptions
To make a reuse cost model the most generic as possible, some assumptions

must be made. This implies in choosing if the costs equations will be a function

of code size, in order to use an estimation method such as COCOMO II (Boehm

et al., 1995), or other measurement method available.

Other point to note is the strategy for integration costs. Typically, this

factor is measured by reused assets, adapted assets and custom developed

software. In this way, a provision for integration costs must be made in a

generic cost model. Assuming that μ calculates development cost in function of

software size, then the cost to integrate two components with size A and B are

() ()[]BAB)+μ(A μμ +− (Equation 7)

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

22

As seen previously, the quality and productivity gains can be achieved in

persons-month, measuring the cost savings by the use of reusable assets over a

lifetime within the investment cycle. Time-to-market considers these savings

when increased sales volume and market share can be achieved (Lim, 1996).

2.5. Classifications
Frakes & Terry (Frakes et al., 1996) defined a set of categories for reuse models.

In that work, the models are categorized together with reuse metrics. This

particular vision is dominant in reuse field of research, being followed by other

relevant works (Nazareth et al., 2004).

The categories of reuse cost models can be summarized as the following:

• Cost and Productivity models. They show the cost of developing

reusable assets and the cost for reusing these assets into a product. It can

also present the effect of reuse on software quality and estimated

schedules. Frakes & Terry state that the use of reusable assets can result

in higher overall development costs. However, these costs must be

recovered through many reuses;

• Quality of Investment models. Reuse activities are often divided into

producer activities and consumer activities (Barnes et al., 1991). These

activities will have influence on the quality of investment model, which

will estimate the reuse benefit for all subsequent activities that profit

from a reuse investment;

• Business Reuse Metrics. Poulin et al. (Poulin et al., 1993), (Poulin,

1997a) define a set of metrics used to estimate the effort saved by reuse

and the Reuse Cost Avoidance (RCA). This category of model addresses

the financial benefit of reuse to a project, consisting of the sum of

benefits measured within the project minus the cost of building the assets

for other projects to reuse.

 Nazareth & Rothenberger (Nazareth et al., 2004) characterize the models

as simple metric-based or cost-based. Mascena (Mascena, 2006) also divides

the models into two categories, called Economic Oriented Metrics (EORM) and

Software Structure Oriented Reuse Metrics (SORM), with almost the same

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

23

meaning of the work of Nazareth & Rothenberger. Next section will survey the

main features of the most significant cost models for software reuse.

2.6. State-of-the-Art
Since the reuse field becomes a promise to solve the quality and productivity

issues in software development, various cost models have been created to

predict the costs and benefits associated with a reuse program. Lim (Lim, 1996)

describes the main features of seventeen models, pointing out how to select the

most suitable for a given organization, including its equations for cost factors

and economic functions. Wiles (Wiles, 1999) make a comparison between

twenty-four models, trying to find out the most accurate through a validation

process.

As a summary of the works cited in the beginning of this section, it will be

presented the most relevant cost models for software reuse found in the

literature.

In 1990, Bollinger & Pfleeger (Bollinger et. al., 1990) presented equations

to calculate the costs associated to activities of a project. Because of this, all

costs are attached with reusable components and distributed by an amortization

schedule. One year later, Barnes & Bollinger (Barnes et. al., 1991) defined the

reuse investment relation as the comparison of the reuse investments with reuse

benefits. This model is totally project-centered, defining a reuse investment as

any cost that does not support directly the completion of an activity of the

primary development goals but is instead intended to make more work products

of that activity easier to reuse. Reuse benefits are the difference between the

activity cost with and without reuse.

Next, Gaffney et al. (Gaffney et. al., 1992) proposed a combination

between domain engineering costs and application engineering costs, using a

unique equation to achieve the total costs. It does not consider the integration

costs and predetermines the number of applications that make up the

engineering domain effort. It also does not provide a pricing structure for

domain engineering team and application engineering team. Finally, there is no

provision for COTS external acquisition.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

24

In the same year, Margano & Rhoads (Margano et. al., 1992) defined a

model that the savings by reuse are based on the productivity rate (Source Lines

of Code / Labor Month) and monthly labor rate (money unit / labor month) of

the producer and the consumer with some additional costs (management

overhead, problem analysis, error correction, and code reintegration costs).

This model considers the costs at component and project level and no

modification or adaptation costs are taken into account. In addition, it

addresses the savings on the design phase, but there is no cost account for

system reliability, understandability and maintainability of the reuse

component.

Next, the model defined by Schimsky (Schimsky, 1992) addresses the

relationship between cost functions drivers and size of lines of code (SLOC). The

cost factors are dependent on the cost to develop, maintain and provide the

code. They are dependent on the investments and periodic costs of component

engineering cycle. The benefits are defined as the cost avoided by not developing

the code from scratch, using a relation between the development cost with and

without reuse, and the breakeven point. This model does not consider

maintenance and reliability costs.

In 1993, Poulin et al. (Poulin et. al., 1993) defined a model with a clear

focus on application engineering cycle costs and it does not take into account

the domain engineering costs. It calculates the ROI based on the Internal

Return of Investment (IRR), assigning the corporate reuse startup costs as the

sum of the savings over all the revenue years minus the costs divided by (1+d),

where d is the discount rate. Poulin et al. model also calculates the NPV by the

difference of the ROI and the initial costs and introduces two fundamental

metrics for software reuse cost models: Relative Cost of Reuse (RCR) – the

cost of writing reusable assets -, and the Reuse Cost Avoidance (RCA),

which quantifies the financial benefit of reuse. RCA metric can be considered a

pattern for corporate viewpoint and a milestone for reuse cost model research

field (Mili et al., 2001).

In the same year, Malan & Wentzel (Malan et al., 1993) described a

model that uses a set of cost factors from development and maintenance phases,

which includes reuse-specific overhead, setup costs, and development with and

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

25

without reuse. It includes the time value of the money for costs, and introduces

the uncertainty factor, whether the asset will be used or not. The model was

validated through a hypothetical scenario. Furthermore, though time-to-market

gains are discussed, they are not quantified.

In 1994, Frakes & Terry (Frakes et. al., 1994) introduced a set of reuse

level metrics and frequency metrics, and they made a comparison between

internal and external reuse, presenting the concept of threshold levels, which

addresses the question of when the reuse is to be applied. This work does not

define a model itself, but some cost equations that can be assigned to the

previous metrics. The viewpoint of this work is focused in both application and

corporation engineering.

In the same year, Kain (Kain, 1994) and Lim (Lim, 1994) proposed two

new models concerning reuse investment. Kain proposes an object-oriented

model creating an abstraction with a set of reusable assets. It takes into account

only the corporate level and it does not address the time variance of resources.

It also does not estimate the quality and productivity gains. On the other hand,

Lim defined a model with a set of Net Present Value equations to calculate the

quality and productivity gains of a reuse program. It takes the estimated value of

reuse benefits and subtracts it from its associated costs, taking into account the

“time value of money”. It defines cost factors for time-to-market and risks

management events, but it is considered a non-practical model due the

difficulties to assess those factors.

In 1995, Boehm et al. (Boehm et. al., 1995) introduced its COCOMO 2.0

as an evolution of the original COCOMO (Boehm, 1981). It incorporates the

reuse paradigm into the previous model and focuses on the component level

lifecycle costs, expressed in man-months. Boehm et al. model defined a cost

factor called ruse that expresses the costs of domain engineering activities. This

model also addresses the costs of application engineering by a factor named

ESLOC, which prorates the size of reused software as a fraction of newly

developed software. The most significant cost models for software reuse uses

COCOMO 2.0 to estimate the cost factors for component and application levels.

The reuse investment analysis field had a great improvement with the

work performed by Favaro (Favaro, 1996) which argues on how the NPV can be

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

26

the best function to estimate reuse costs and benefits. He discusses the

characteristics of NPV, focusing on its additive nature, its immunity to arbitrary

factors, and its provision for the time value of money. Favaro also focuses on

component engineering, specifically in the economics of COTS production and

marketing. However, his analysis is not carried out from the viewpoint of an

asset developer, but rather from the viewpoint of a corporate manager. It

implies that the model do not consider the investment analysis for lower level

activities, such domain engineering and product engineering.

In the same year, Mili (Mili, 1996) defined a set of metrics to calculate the

ROI associated with component development for reuse, and also the reusability

in adapting it from a project for the purpose of reuse. This model has a focus on

component level costs and potential domain engineering benefits. Again in

1996, Devanbu et al. (Devanbu et. al., 1996) presented a model that has an

axiomatic approach for a reuse benefit function. It reflects not only how much

code is being reuse, but also in what manner it is being reused. They had tested

the function through a group of empirical data and a comparison with other

models has been made.

Two years later, Favaro et al. (Favaro et al., 1998) reinforce the focus on

NPV to represent the net totally of all contributions to the value of an

investment. Favaro et al. expands his previous work by the use of the Capital

Pricing Asset Model (CAPM) to determine the discounted cash flow, providing a

method for calculating the time value of money over the operational benefits

and costs. Favaro et al. also presented two techniques for evaluating

investments: Decision Tree Analysis and Contingent Claim Analysis.

The University of Southern California (USC) proposes in 1999 a cost

model that estimates the manpower for software development using COTS

products (COCOTS, 1999). The authors divide the model into two parts: Early

Design and Post Architecture. The difference among them is how early the

product is deployed. The level of information and the required precision can

also contribute to distinguish the values estimated. COCOTS define five cost

factors: costs of candidate component for assessment, component tailoring,

glue code generation, system level programming, and verification/validation.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

27

In the same year, Wiles (Wiles, 1999) performed a study for defining a

generic cost model. Wiles do not define a model itself, but he creates a

framework that summarizes the main features of a generic cost model.

According to Wiles, in order to evaluate a cost model it is necessary to define its

development benefits and its development and maintenance effort. An

investment analysis framework to estimate the system and corporate viewpoint

can use these cost factors.

In the next two years, the most relevant study in reuse cost models were

performed by Mili (Mili et al., 2000), (Mili et al., 2001). In the first work, Mili et

al. define a model that calculates the NPV and the Profitability Index (PI) for

corporate, domain engineering, application engineering and component

engineering cycles. The cost values estimated by the model can interpreted in

many different viewpoints, depending on the stakeholders need for decision-

making. The main feature of this model is the relationship of the different levels

of information: cost estimation for one level of reuse decision propagates itself

to the next. The second work performed by Mili et al. defined an integrated cost

model for software reuse. This model was defined by an extensive study of the

most important cost models available on the literature and it can be elected as a

fundamental milestone in this field of research.

After the works of Mili et al., only the study performed by Nazareth et al.

(Nazareth et. al., 2004) can be considered significant to the reuse cost model

research field. In this work, Nazareth et al. attempt to examine the benefits of

software reuse according to the models adopted by the organizations. It creates

a classification of reuse cost models as metric-based models and cost-based

models. Next, it describes a domain-specific software reuse model, which is

based on the computation of reuse costs and the reuse rate. This work also

makes a study comparing the size of asset repository and the cost savings

related with this metric. Another aspect of this model is a comparison of its cost

curves with the most relevant models for software reuse.

 A summary of the most important cost models for software reuse can be

viewed in the timeline at Figure 2.3.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

28

Figure 2.3 – Reuse Cost Models Timeline

2.7. Models Comparison
In order to understand the main aspects of reuse cost models, some authors

emphasized the investment side of them (Bollinger et al., 1990), (Malan et al.,

1993), (Favaro, 1996), (Poulin, 1997a),. In general, the assessment of the worth

of reuse as an investment can be divided into two activities (Wiles, 1999): (i)

Cost Estimation and (ii) Investment Analysis.

(i) Cost Estimation. All activities demanded by a reuse program can assign

financial values determining the cost estimation as a collection of cash flows.

(ii) Investment Analysis. When a reuse program produces a set of cash flows

by a cost estimation model, its results can be used for comparing the time value

of money. After this, management can start a decision-making process, in order

to evaluate the cost-benefits factors.

All reuse activities cost factors must be converted into cash flows in order

to complete the investment analysis. To perform this is a challenge for a reuse

program due to the intangibility of the features involved (Wiles, 1999).

However, it is recommended to include these intangible factors to take costs

into account.

Another point to consider when analyzing cost models is the uncertainty

factor related to estimation output. There is a risk encapsulated on these

estimations and they must be taken into account. In (Favaro et al., 1998) the

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

29

risk analysis for reuse costs includes activities to estimate a unique risk for the

entire reuse program and also estimates the market risks handled by altering

the discount rate.

In this comparison all economic models captures cost estimation,

including factors to determine cost and benefits. In addition, all cost values can

be rearranged to produce financial values. Some sort of investment analysis is

included on these models, with some level of complexity distinguishing them.

Some models simply subtract costs from benefits, while another group uses

more sophisticated probabilistic models to perform this.

In the major part of models, cost estimation and investment analysis can

be considered independent techniques and the separation between them is

straightforward. Cost estimation is the part of models that have a reasonable

level of variance, while investment analysis presents some level of uniformity

among the models surveyed.

One common aspect is the cost summing and averaging over subparts,

which will compose the total cost for a specific viewpoint. The level of

granularity varies according to the model, but in most cases its addresses the

costs of systems, subsystems, software components, reuse of a component and

code units (e.g. LOC). In some models, the cost to locate a software component

and modify it is considered as an important part of the overall cost.

Development cost can involve the building of new reusable software from

the scratch or adding reusability for it. Almost all models assume that systems

will produce reusable software.

Some part of models assumes that an important benefit of software reuse

is to increase its profits due higher sales.

The most preferred way to express the models is the cost prediction (Lim,

1996), which try to estimate the cost to build a system with reuse. Only a quarter

of models surveyed have some kind of investment analysis using cash flow

techniques. These models consider the period of one year as a standard

investment cycle.

A summary of the reuse cost model features is presented in Table 2.1.

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

30

Table 2.1 – Reuse Cost Model Comparison

Model Reuse Cycle Economic
Function

Cost Factors Viewpoints

(Bollinger et. al.,
1990)

Component eng.,
Corporate eng.

Reuse benefits Component eng.
with and without
reuse

Corporate

(Barnes et. al.,
1991)

Domain eng.,
component eng.,
application eng.

Breakeven, ROI,
quality gains

Application eng.
with and without
reuse, comp. eng.,
domain eng.

Producer,
consumer

(Gaffney et. al.,
1992)

Domain eng.,
application eng.

ROI, breakeven Application eng.
costs, prorated
domain eng. costs,
productivity

Corporate

(Margano et. al.,
1992)

Component eng. Payback, NPV,
productivity gains

Components costs,
overhead,
investment

Project manager,
component
developer

(Schimsky, 1992) Domain eng. Breakeven for
application eng.
costs

Develop, maintain
and reuse code

Project

(Poulin et. al.,
1993)

Component eng.,
application eng.,
corporate eng.

ROI, NPV,
profitability index

KLOC Corporate

(Malan et. al.,
1993)

Domain eng.,
component eng.

NPV Overhead
lifecycle
development

Domain manager,
asset developer

(Frakes et. al.,
1994)

Application eng.,
corporate eng.

Reuse level, reuse
frequency

Number of
reference to items

Project, corporate,
component

(Kain, 1994) Domain eng. ROI Domain eng.
costs, application
eng. with and
without reuse

Project decisions
at corporate level

(Lim, 1994) Application eng. NPV Component costs,
productivity, reuse
with KNCSS

Corporate,
project-wide

(Boehm et. al.,
1995)

Domain eng,
application eng.

Lifecycle costs RUSE, ESLOC Corporate, project

(Favaro, 1996) Component eng. NPV, profitability
index, ARBV,
Internal rate of
return, payback

Cost for domain
eng. and
component eng.

Corporate

(Mili, 1996) Component eng. ROI Component level
factors

Producer,
corporate

(Devanbu, 1996) Application eng.,
corporate eng.

Reuse benefit Size and structure
of application

Project

(Favaro et. al.,
1998)

Corporate eng. PV and NPV Cash flows,
discount rates and
risk assessment

Corporate

Chapter 2 – Key Developments in the Field of Software Reuse Cost Models

31

(COCOTS, 1999) Application eng. Application eng.
costs

Assessment,
tailoring and glue
code volatility

Project, corporate

(Wiles, 1999) Component eng. Development and
maintenance
benefits

Frequency of
reuse

Producer,
consumer,
component

(Mili, et. al, 2000) Component eng.,
domain eng.,
application eng.,
corporate eng.

NPV, payback,
ARBV, internal
rate of return,
profitability index

Investment cost,
episodic costs,
episodic benefits

Component,
domain,

application,
corporate

(Mili et. al., 2001) Component eng.,
domain eng.,
application eng.,
corporate eng.

NPV, payback,
ARBV, internal
rate of return,
profitability index,
ROI

Investment cost,
episodic costs,
episodic benefits

Component,
domain,

application,
corporate

(Nazareth et. al,
2004)

Domain eng. Development
benefits

Reuse rate, degree
of fit

Component,
domain

2.8. Chapter Summary
Software reuse cost models can be defined as the notation of the costs and

benefits of a reuse program.

 They can be divided into a set of features, such as investment cycles, cost

factors, economic functions, viewpoints, type of reuse organizations and

hypothesis for its use.

 This chapter presented a classification for reuse cost models and a brief

description for the most relevant ones. A comparison was made in order to

discuss the main aspects of those models.

 In the next chapter it will be presented an evolution of reuse cost models,

based on software product lines approach for a reuse program.

Software Product
Line Cost Models:
State-of-the-Art

When organizations adopt software reuse strategy, they want to decrease

development costs and improve the quality level of their products. However,

when a reuse program is merely focused on reusing small pieces of code, which

is a simple cloning of code designed for one system for using it in another one, it

has been unprofitable (Northrop, 2002). This type of reuse approach is

frequently called as opportunistic reuse (Schmid, 2002) and it implies in reuse

the assets in a non-systematic way.

In the literature, there are a large number of works that show the

obstacles faced during the adoption of a reuse program that is non-systematic

(Sametinger, 1997). The work conducted by Ezran et al. (Ezran et al., 2002)

states that reuse is a systematic software development practice, which means

that to be effective a reuse program must consider a consistent process in order

to establish itself within an organization. The adoption of a systematic reuse

process is one of the key factors for success in reuse programs (Morizio et al.,

2002).

A growing research area within software reuse context is the approach

related with product line engineering (Clements et al., 2001). It focuses the

development from the perspective of a whole set of products, called product

line, instead of individual products. In this approach, reuse happens

systematically, i.e., the key characteristics of products in which the assets will be

reused are already well known.

3

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

33

Cost models have an important role for an organization that is adopting a

reuse program using the software product line approach. In this context, this

chapter presents nine cost models for product line engineering and discusses

the main aspects that configure an effective model.

3.1. Introduction
Software product lines approach is a relatively new concept, but it is emerging

as a practical and important software development paradigm (Clements et al.,

2001). It has been succeeded because organizations exploit their commonalities

and variability in applications to achieve economies of development.

 There are several case studies presenting the benefits on adoption of

software product lines (Northrop, 2002). CelsiusTech Systems, a Swedish

company supplying control systems for defense navies, used a product line to

deliver more than fifty systems based on the same set of assets. They have

savings by shortened delivery schedules, allocating a smaller staff to produce

more systems. Their software reuse level is about 90% (Brownsword, 1996).

 Cummins, the world's largest manufacturer of diesel engines, saved

almost a year when developing their engine control software (Northrop, 2002).

This fact was possible by adopting a product line approach, offering a mix of

features and platforms that otherwise would require almost four time their

current staff.

 The US National Reconnaissance Office outsourced their assets

development, creating a product line to spacecrafts command and control

software (Northrop, 2002). They saved a 50% in the overall cost and schedule,

and decreased the number of development staff and defects.

 Market Maker Software, a German development company, produces

the most popular stock market software in Europe. They adopted a product line

approach and it takes their product available for customers as few as three days,

even if the software must be tailored (Northrop, 2002).

 Other key players reported success stories when using product line

engineering. The cases were derived from Alcatel (Coriat, 2000), Hewlett-

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

34

Packard (Toft, 2000), Philips (Philips, 2000), Boeing Company (Sharp,

2000), and Robert Bosch GmBh (Thiel et al., 2000).

Despite the success in adopting software product line reported in the

works cited previously, the community needs more quantitative data to support

that approach due to move to product lines implies in considering reuse as an

investment (Wiles, 1999). The next sections will discuss about software product

line features, cost models for software product lines and a study for achieving an

effective model.

3.2. Software Product Lines
According to Clements et al. (Clements et al., 2001) a software product line can

be defined as a set of “software-intensive systems that share a common,

managed feature set satisfying a particular market segment needs that are

developed from a common set of core assets”.

 Core assets are the basis for a software product line and they often

include architecture, reusable software components, domain models,

requirement statements, documentation, performance models, schedules,

budgets, test plans, test cases, work plans, and process description.

 In a product line, each system is a product in its own right. Each product

is created by taking specific components from a core asset base and managing

the variation among them. New components can be added to the core asset base

and they can be assembled according to the rules specified by a common

architecture. The term development in a product line can describe how the core

assets and products will be developed. It implies that software development

within the context of product line can occur in three different ways (Northrop,

2002):

• Make it. The organization builds it from the scratch or by mining legacy

systems;

• Purchase it. The organization acquires Components Off-the-Shelf

(COTS) from the market and provides its integration for a product;

• Commissions it. The organization contracts with a third-part the

development.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

35

 In summary, the term development can be assigned for a set of activities

that involves building, acquiring, purchasing, integrating, or combinations of

them.

 We agree with the SEI’s vision (Clements et al., 2001) that distinguishes

between the terms domain and product line. Domain can be described as a

specialized body of knowledge, an area of expertise, or a collection of related

functionality. Core asset development can be defined as a (i) domain

engineering activity and product development as a (ii) product engineering

activity. In addition, in these activities reuse must be planned, enabled and

enforced, requiring a certain level of (iii) management as an important part of

the reuse program. Figure 3.1 shows the essential product line activities.

Figure 3.1 – Software Product Line Activities (Clements et. al., 2001).

3.2.1 Domain Engineering
The main target of core asset development is to establish a production capability

for its products. It is an iterative activity, with its inputs and outputs affecting

each other, as presented in Figure 3.2. The inputs to core asset development

include:

• Products constraints. Commonalities and variations among the

products that will be used to produce the product line, including a set of

behavioral features;

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

36

• Production constraints. Standards and requirements that apply to

the products in the product line;

• Style, patterns and frameworks. The architectural pieces meeting

the product and production constraints;

• Production strategy. The overall approach for building the core asset.

It can be categorized as top-down strategy (starting with a set of core

assets and creating products with them) or bottom-up strategy (starting

with a set of products and generalizing its components to produce the

assets); and

• Inventory of existing assets. Software and other organizational

artifacts available that can be included in the asset repository.

 The outputs to core assets development include:

• Product line scope. Describes the products that will compose the

product line;

• Production plan. Describes how products are built from the core

assets; and

• Core assets. The elemental components to produce products in a

product line.

Figure 3.2 – Core Asset Development (Clements et. al., 2001).

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

37

3.2.2 Product Development
This activity is dependent from the requirements for specific projects. It also can

vary according to the assets, production plan and organizational context.

As the same way the domain engineering, product development is also an

iterative activity, as seen in Figure 3.3. Creating products affects the product

line scope, production plan, core assets and requirements for specific products.

Figure 3.3 – Product Development (Clements et. al., 2001).

3.2.3 Management
In product line context, there are two types of management: technical and

organizational. The first type addresses the core asset development and

product development activities. It must ensure that the development staff will

perform its task according to the process defined for the product line. In

addition, technical management has to collect data to track project progress.

The other type of management takes into account the organizational structure.

It can determine the necessary funding to core asset evolution and coordinates

the technical activities and iterations between core asset development and

product development.

Finally, it must address the risks mitigation within a product line, ensure

the perfect communication between customers and suppliers and create an

adoption plan in order to achieve the organizational goals.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

38

3.2.4 Product Line Engineering
Product line engineering focuses on producing multiple variants of a system by

exploiting the commonalities among systems in the form of reuse (Toft, 2000).

The key to successful product line engineering is to identify early an architecture

that provides a guide to build the products in a product line (Bayer et al., 1999).

 According to the work conducted by SEI (Clements et al., 2001), under

the umbrella of the three essential areas there are 29 practice areas that must

be mastered for a successful product line. A practice area is a “body of work or a

collection of activities”. In a product line context, each practice area has a

particular significance and they can be categorized as following: (i) software

engineering, (ii) technical management, and, (iii) organizational management.

Figure 3.4 presents the relationships among categories of practices areas.

Figure 3.4 – Relationships among Categories of Practice Areas (Clements et. al.,
2001).

3.3. A Survey on Cost Models for Software Product
Line
One important aspect of a reuse process is to determine its effect on software

attributes, such as cost, quality and time-to-market (Schmid, 2002). Basically,

cost is the only attribute that can be valued in an absolute manner. Within this

context, software development managers want to predict the costs and benefits

of a development approach.

 Product line engineering is often the most economical choice in a long

run, but this fact can only be verified if the organization has a solid framework

in order to calculate cost factors and benefits during a given period of time

(Clements et al., 2001). Another point to consider is the various scenarios that

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

39

can occur in a product line that brings to the organization some difficulties to

distinguish among software reuse approaches. A cost model for software

product line can help distinguish these situations. Next topics will present the

most relevant cost models found in the literature and their main features.

3.3.1. Poulin’s Cost Model for Software Product
Lines
Poulin (Poulin, 1997b) uses two parameters for estimating the effects of reuse:

Relative Cost of Reuse (RCR) and Relative Cost of Writing for Reuse

(RCWR).

 RCR is a ratio that compares the effort needed to reuse software without

modification to the costs associated with developing the same software for a

regular and single use. This metric, when applied to a set of assets, can predict

the percentage of effort needed to develop them using the comparison among

the two situations.

 RCWR is a value that compares the costs of creating reusable assets to

the cost of writing software for a unique usage. It also measures the effort in

some percentage value.

Poulin’s model uses RCR and RCWR to calculate two additional values,

predicting the savings for an entire project: Reuse Cost Avoidance (RCA)

and Additional Development Cost (ADC).

 RCA compares the savings of reusing assets over writing the equivalent

software for a single use. The RCA can be calculated by two new values:

• Development Cost Avoidance (DCA), which measures the savings

based on the total software reused and the cost of reusing that software.

It can be assigned according to the following equation:

() ⎟
⎠
⎞

⎜
⎝
⎛−=

LOC
CSURCRRSIDCA *1* (Equation 8)

where, RSI means the Reused Source Instructions percentage, RCR is the

relative cost of reuse, CSU is the cost of single-use code and LOC the

amount of lines of Code.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

40

• Service Cost Avoidance (SCA). It represents the maintenance savings

related to the eliminations of repair costs. It can be calculated according

to the equation:

ECERRSISCA **= (Equation 9)

where RSI is the reused source instructions percentage, ER is the error

rate and EC the error cost.

Then, the RCA can be expressed in terms of the sum of DCA plus SCA.

 ADC Is the cost of writing software for reuse and is based on the RCWR

and the actual code written for reuse. It reflects the cost of writing the reusable

assets, related with RSI, over the cost of writing the software for a single use.

The equation that defines ADC is the following:

() NCCRSIRCWRADC **1−= (Equation 10)

where RCWR is the relative cost of writing for reuse, RSI is the reused

source instructions and NCC is the new code cost.

Finally, the model of Poulin establishes the return of investment (ROI)

value for the set of assets of a product line. The equation for the ROI is defined

by ∑ −
n

=i
i ADCRCA=ROI

1

 (Equation 11), where n represents the number of

successive uses of the reusable assets.

3.3.2. ABC Approach
In (Cohen, 2003), Cohen introduces an approach to determine the investment

and the projected ROI for the development of a set of reusable assets. This

approach is called ABC and it is based on the following factors:

• Applications. The different systems that an organization might develop

using the product line assets. The time period for an investment cycle

must be taken into account.

• Benefits. The project costs savings when using the product line assets.

• Costs. The actual costs of reuse than an organization incurs when

developing and using the assets.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

41

In order to produce the ROI values, Cohen defines two values for

measurement: Degree of Reuse (DOR) and Cost of Reuse (COR).

 DOR represents the assets percentage of use for the development of a

typical software product. COR is the value considers the cost of developing

reusable assets and the cost of applying those assets in the development of

products.

3.3.3. Schmid Model
In this model, Schmid (Schmid, 2003) addresses the formal definition of a cost

model for software reuse, which can be considered as a basis for the work

conducted by Böckle et al. (Böckle et al., 2004) and Clements et al. (Clements et

al., 2004). Schmid defines its model into three steps, where each higher level

model can be seen as a refinement and an extension of the next lower level

model. The steps are:

• First Order Model. It allows making explicit the tradeoffs that are

involved in analyzing the economics of a certain product line situation

and thus in determining an optimal scope for a reuse infrastructure.

• Second Order Model. Addresses the time and monetary aspects in the

context of reuse economics.

• Third Order Model. It step accounts for risks and opportunities in the

context of product line economics.

As cited previously, the concept of a reuse scenario for a product line was

originally described in this work, as “a product development plan that describes

which products with which features should be fielded at which point of time. In

particular, a product line scenario determines a product portfolio”.

Moreover, this work approaches the investment analysis for a product

line as the financial theory of options, which represents the right without

obligation to perform a discretionary action in the future.

Finally, Schmid presents the use of the technique of decision tree analysis

(Harrison et al., 2002) in order to perform risk analysis into a product line

scenario.

3.3.4. Convergys Experience

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

42

The product line cost model defined by Convergys Corporation (Peterson, 2004)

is based on the comparison of software product development in two scenarios:

Independent scenario and Software Product Line (SPL) scenario.

 The Independent scenario is based on a family of products developed

independently from one other. Each product has its own dedicated funding

source and development organization. This scenario is considered the most

common inside software organizations.

 SPL scenario assumes that a set of assets common to multiple products

are developed and supported by a “component factory”. This factory is

responsible to deliver component versions to the product groups, which are

responsible to integrate the reusable assets, adapting or extending them to

deliver new products for specific vertical markets.

This approach focuses on the benefits associated with productivity

improvement and leverage associated with establishing a common set of

components upon which members of the product family would be based. To

determine the benefits in that way, the model defines a demand function,

expressed in function points per unit time, according to the equation above:

ππ M
T

=D ∗
1

 (Equation 12)

where π is set of requirements for a given product within a product line,

T is the time period considered for benefits analysis and πM a “mapping”

between the requirements and the effort (expressed in functions points units)

needed to build those requirements. The demand function is a fundamental

aspect of the model due its utilization to calculate a set of costs and benefits

factors:

• Commonality and Leverage: in one product line scenario, the

common component factory develops the functionality common for two

or more products. The product group team implements the functionality

specific to a vertical market. A set of commonality parameters is defined

to express the effort shared by other products in a product line. The

leverage notion of this model addresses the fraction of new functionality

produced by the component factory that benefits the kth product.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

43

• Productivity and Throughput: software development organizations

respond to market demand by delivering new releases of their product

that increase its value to potential customers. The productivity needed to

deliver new releases can be calculated by the average size of new products

versions over the planned period, for a product k. It also considers the

average staffing level allocated to that product development and its value

is expressed in function points per unit time. The throughput has the

same unit value.

• Independent and SPL Staff Level: in the SPL scenario, the

development team is allocated between the common component factory

and the individual product groups. The SPL staffing is reduced due the

elimination of redundant demand and due to an increase on productivity

levels. The model has an equation that shows that an organization can

decrease their staffing levels and still maintains throughput equivalent to

the Independent Scenario.

• Financial Flexibility: the SPL scenario has a lower staffing

requirement than Independent scenario. Based on the loaded cost per

person per year the model can estimate the annual investment

requirements and the cost avoidance annualized. The flexibility comes

up when instead of reducing the staffing level, they can be reallocated to

the component and product groups in order to increase the throughput.

• Time Dependence of the Benefits: during the period when the

component is being deployed to various products, the benefits will have a

dependence on the number of products using the component and the

time period which the products are using that component.

The model itself does not define a set of benefit functions, but it presents

a list of possible benefits to achieve in applying product line engineering. This

list may serve as a good starting point for producing a useful set of benefit

functions, as follows:

• Research and Development (R&D) Investment. The ability to

leverage the R&D investment across the product family by reusing a

common set of components.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

44

• Subject Matter Expertise. The ability to leverage subject matter

experts across the product family by concentrating domain subject

matter experts with similar skills and knowledge into centralized groups

that serve all products.

• Productivity and Quality. Improving productivity and quality by

breaking large, monolithic applications into smaller, more manageable

projects and by using components that encapsulate the functionality of

applications.

• Time to Market. Increasing the rate of delivery of new capabilities to

market and enabling new products to be delivered faster by reusing well-

established components.

• People Mobility. Providing employees with more career development

opportunities by standardizing the development environment and

processes, thereby reducing the learning curve associated with a move to

a new project.

• Supplier Relationships. Standardizing the platforms and

development environment enables a more effective leverage of supplier

relationships.

• Geographic Flexibility. Standardizing component-based development

facilitates the distribution of development responsibilities across

locations.

• Sourcing Flexibility. Using a modular architecture to enable greater

flexibility to build, license, or acquire software.

• Product Refresh. Using a modular architecture to facilitate the process

of refreshing the product family as new technologies and/or software

components becomes available.

3.3.5. Tomer Model
The model created by Tomer et al. (Tomer et al., 2004) addresses the issues in

evaluating reuse scenarios for product lines, defining three dimensions for all

engineering activities: development, maintenance and reuse. The model

assumes that an asset repository is already established and two cost factors are

associated with it:

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

45

• Mining. The activities of fetching reuse candidates from specific

products and copying them into the repository.

• Acquisition. The activity of copying artifacts from repository and

integrate them into a product.

In this sense, Tomer et al. model assume that exist only two types of

reusable assets: Repository Assets and Private Assets. The first stands for

reusable artifacts that are stored in the repository, and the later refers to the set

of artifacts that are contained within a specific product and are available either

for mining or catalog or for private modification.

The model also describes two types of reuse operations:

Transformation and Transition. Transformation addresses activities such

as adaptation for reuse, repository construction from scratch, private assets

modifications and build of new assets. Transition stands for the operations to

catalog assets acquired externally and other aspects from mining and cataloging

processes.

One important aspect of this model is the definition of a reuse scenario as

“any sequence of elementary (reuse) operations”. Finally, Tomer et al. define

the cost of reuse as the sum of the costs of operations, transformation and

transition, according to the application of a cost policy.

3.3.6. Constructive Product Line Investment Model
(COPLIMO)
Boehm et al. (Boehm et al., 2004) describes a software product line economics

model that consists of two components: a Product Line Development Cost

Model and an Annualized Post-Development Life-Cycle Extension. This

model is an extension of Constructive Cost Model II (COCOMO II) (Boehm et

al., 1995).

The Product Line Development Cost Model in this model calculates

values similar to RCR and RCWR from (Poulin, 1997b). To estimate RCWR,

COPLIMO uses a COCOMO II multiplier, called development for reuse (RUSE),

and two constraints factors, namely required reliability (RELY) and degree of

documentation (DOCU). The RCWR correspondent value is expressed by the

equation:

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

46

() DOCURELYRUSE **1+ (Equation 24)

 To calculate RCR, COPLIMO makes equivalence from size of code using a

factor known as assessment and assimilation (AA). Next, COPLIMO analyses

the type of reuse is being used, black-box reuse or white-box reuse.

According to the type of reuse COPLIMO accounts for modifications of design,

modifications of code, integration effort, the level of system understanding, and,

the programmer unfamiliarity. All these factors are used to calculate an

equivalent size of code and allow COPLIMO to use COCOMO II traditional

equations to perform effort estimation.

The Annualized Life-Cycle Model in this model takes into account the

costs to maintain the product line within a life-cycle. To perform this it uses the

COCOMO II approach, adding the initial development costs in Persons-Month

to the maintenance costs based on the number of years in maintenance. Finally,

the model uses an equation to estimate that costs, according to the following

expression:

() () ()∏+= EMAMSIZEANLNPMLNPM B ***, (Equation 25)

where N is the number of products under maintenance, L is the number of

years, A and B are COCOMO II adjustment factors, AMSIZE is the annualized

maintenance size, and EM is a COCOMO II's effort multiplier.

3.3.7. Structured Intuitive Model for Product Line
Economics (SIMPLE)
The model proposed by Clements et al. (Clements et al., 2005) can be used to

compute estimates for various economics measures to build, sustain and

evolution of software product lines. This model summarizes its features in the

following situation:

“An organization has p_init product lines, each comprising a set of

products, and s_init stand-alone products. Over a period of time, the

organization wishes to transition to the state in which it has p_final product

lines, each comprising a (perhaps different) set of products, and s_final

stand-alone products. Along the way, the organization intends to add k

products or delete d products.”

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

47

Figure 3.5 shows the general scenario for SIMPLE.

Figure 3.5 – SIMPLE General Scenario (Clements et. al., 2005).

Clements et al. state that organizational decision makers will want to

know what their plan will cost, what benefits it will bring, and how it compares

with other alternatives. SIMPLE can be used to weight the costs and benefits of

one or more product line alternatives, using four basic cost functions:

Organizational Costs, Core Asset Base Costs, Software Unique Parts

Development Costs, and Asset Reuse Costs.

Organizational Costs, denoted by Corg(), it is a function that returns

how much it costs the adoption of product line approach for a set of products of

an organization.

Core Asset Base Costs, denoted by Ccab(), it is a function that returns

how much it costs to develop core asset base to satisfy a particular scope.

 Software Unique Parts Development Costs, denoted by Cunique(),

it is a function that returns how much it costs to develop the unique parts of a

product that are not based on the assets in the core asset base. These parts

include software and other documentation artifacts.

 Asset Reuse Costs, denoted by Creuse(), it is a function that returns

how much it costs to build a product reusing core assets from a core asset base.

By the use of these four basic cost functions it is possible to establish the

cost of building a product line containing n products, according to the following

equation:

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

48

() () () ()()∑
n

=i
ireuseiuniquecaborg productC+productC+C+C

1

 (Equation 13)

This equation does not handle with all type of situations that can occur in

a product line, but SIMPLE can be used to derive new cost functions in order to

estimate the costs and benefits of several reuse scenarios.

Often is necessary to evaluate if is worthwhile to build n products using

the core asset base or build them independently without sharing the assets.

SIMPLE has a cost function called Cprod that returns the cost of building a

product pi in a stand-alone fashion. This function is often associated with

traditional software engineering cost models and can be expressed according to

the following equation, to build n products independent from the product line:

()i

n

=i
prod pC∑

1

 (Equation 14)

Clements's model allows the estimation of cost savings simply by

[(Equation 14) – (Equation 13)].

To account the costs in which a product appears in a new version,

SIMPLE presents a cost function called Cevo. This function, when

parameterized with the product and version numbers, returns the cost of

building that version. Clements et al. recommend start this estimation with a

historical percentage of an entire product, e.g., ()prodevo C=C ∗0.2 . The model

also defines an analogous cost function under a product line umbrella, called

Ccabu, which means the costs of core asset base update, when releasing a new

version of a product.

One important aspect of SIMPLE is that there is no limit for benefits

function creation. Clements et al. recommend that each organization can define

its own benefits functions. To perform this, let assume that there is a benefit

benj, and B(benj) its benefit function. Each benefit function is parameterized by

the organization time period of interest, denoted by t. The following equation

can be used as a general benefit function, for a set of n benefits:

()tB
n

=j
jben∑

1
(Equation 15)

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

49

Finally, SIMPLE defines nine reuse scenarios in order to capture the

dynamic situations that can occur into an organization. The scenarios are

summarized below:

• Scenario 1: The cost of building a software product line. In this

scenario, an organization wants to know the costs of producing a set of

products as a software product line. The equation for this scenario,

considering a t time period and n products, is given by the following:

() () () ()()∑
n

=i
ireuseiuniquecaborg t,productC+t,productC+tC+tC

1

 (Equation 16)

• Scenario 2: The cost of building a software product line vs.

building the products independently. This scenario calculates the

savings (or losses) when considering these two situations. The equation

is:

()t,productC i

n

=i
prod∑

1

-

() () () ()()⎟
⎠

⎞
⎜
⎝

⎛ ∑
n

=i
ireuseiuniquecaborg t,productC+t,productC+tC+tC

1
 (Equation 17)

• Scenario 3: The cost of releasing a new version of a product

line member. This scenario calculates the cost of a new product in a

product line using the equation below:

() () ()reuseuniquecabu C+C+C (Equation 18)

• Scenario 4: Comparing costs of converting to a product line vs.

the cost of evolving the existing set of stand-alone products.

This scenario calculates the cost of setting up a product line for its first

evolutionary cycle, given by the equation 13. It also returns the value of

evolution for a set of stand-alone products, given simply by Cevo for each

product i. The equation for this option is:

()i

n

=i
evo productC∑

1

 (Equation 19)

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

50

When considering the cost savings (if any) for the comparison of the two

options the equation can be defined as the difference between [Equation

18] and [Equation 13].

• Scenario 5: Return on Investment (ROI). In this scenario, an

organization wishes to know the ROI achieved by setting up a product

line. The model assumes that ROI can be calculated by dividing the cost

savings from the costs of investments. SIMPLE also assumes the later as

Corg + Ccab. So, the ROI after one round of evolution of a product line is

expressed by the equation

() () () () ()()
() ()()caborg

n

=i
ireuseiuniquecaborgi

n

=i
evo

C+C

productC+productC+C+CproductC ⎥
⎦

⎤
⎢
⎣

⎡
− ∑∑

11

(Equation 20)

• Scenario 6: Constructing and evolving a product line. In this

scenario an organization wishes to know the costs savings (or losses) over

a given number of time periods, denoted by nbr_periods, for the

construction of s1 products using a product line, versus constructing and

evolving them in a stand-alone fashion. To calculate the benefits

associated with this scenario, SIMPLE translates nbr_periods into a

number p of evolutionary updates. Finally, this scenario has the following

equation:

()∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡periodsnbr

=t
i

s1

=i
prod t,productC

1 1
-

() () () ()()∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛periodsnbr

t=

nj

=i
ireuseiuniquecabuorg t,pC+t,pC+tC+tC

1 1

(Equation 21)

• Scenario 7: Redistributing a product among existing product

lines. In this scenario, an organization wishes to determine the optimum

division of product among the optimal number of product lines to

minimize the cost of initial construction and maintenance for a given

period of time. Let Sx the number of stand-alone products, nj the number

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

51

of products in the jth product line, npl the number of product lines, with

()∑+≤≤ jnSnpl 10 and nbrperiods the number of periods (in years). The

equation to solve this scenario is defined below:

()xj S,nnpl,COST =

() () () ()() ()∑ ∑∑ ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛periodsnbr

t=

S

=i
prod

npl

=j

jn

=i
ireuseiuniquecabuorg tC+t,pC+t,pC+tC+tC

1

2

11 1

(Equation 22)

• Scenario 8: Adding new products to existing product lines. In

this scenario, an organization wishes to determine the optimal allocation

of the k products over the existing product lines. The cost of adding a

product in a product line PL (assuming this is done in a time period t) is:

() () () ()productPLtCproductPLtCproductPLtCtC uniquereusecaborg ,,,,,, +++ (Equation

23)

• Scenario 9: Build vs. buy. In this scenario, an organization wishes to

determine the optimal split between building and buying additional

assets for k products. This scenario can be solved by Ccab(t), which

returns the original costs of all assets. In the case where lease, rent or

royalties must be made and t>1, Ccab(t) returns the additional cost for

that year payments. When assets are created in-house and t>1, Ccab(t)

returns the amount anticipated for maintenance.

3.3.8. Software Cost Estimation Model for Product
Line Engineering (SoCoEMo-PLE)
The model created by Lamine et al. (Lamine et al., 2005) provides cost

estimation for a software product line by using Poulin's (Poulin et al., 1993) and

Mili et al. (Mili et al., 2000) models as start point. It assumes that an

organization adopts a reuse program through four engineering cycles:

component engineering cycle, domain engineering cycle, product engineering

cycle, and corporate engineering cycle. All these cycles have cost functions based

on the Reuse Cost Avoidance (RCA), Relative Cost of Reuse (RCR), Relative Cost

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

52

of Writing for Reuse (RCWR), Service Cost Avoidance (SCA), and Additional

Development Cost (ADC). It also addresses economic functions as the same way

that Mili et al. in their integrated cost estimation model for reuse.

This model also establishes a process in order to run the model with the

definition of four actor's roles:

• Corporate engineer. Decides to invest or not in a product line

engineering approach;

• Domain engineer. Decides to invest or not in a domain engineering

activity;

• Application engineer. Decides to adopt or not a product line

engineering development approach in a specific project;

• Components engineer. Decides to develop or not a reusable asset to

the product line to satisfy a set of specified requirements.

3.3.9. Quality-based SPL Cost Estimation Model
(qCOPLIMO)
Boehm et al. (Boehm et al., 2006) describe a quality-based product line life cycle

cost estimation model, namely qCOPLIMO, which is derived from previous

authors models COQUALMO (Chulani et al., 1999) and COPLIMO (Boehm et

al., 2004), both are extensions of COCOMO II (Boehm et al., 1995). Figure 3.6

presents the qCOPLIMO structure.

Figure 3.6 – qCOPLIMO structure (Boehm et al., 2006).

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

53

 The main motivation for qCOPLIMO is the fact that the most significant

product line cost models does not addresses software quality costs. This model

consider how much is spent on removing undetected defects after a product

release and it use the Poulin's metrics (Poulin, 1997b), RCWR and RCR, to

estimate quality-based software product line cost for developing N products,

according to the following equation:

() () RCRRCWRPL CNCNC *1−+= (Equation 26)

3.4. Towards an Effective Software Product Line
Cost Model
According to the common features of software product line cost models

identified in the models of the previous sections, we are describing a set of these

features that can be considered significant when creating a new cost model.

Next, a brief description of these features is presented.

3.4.1. Costs and Benefits Functions
According to the work described by Clements et al. (Clements et. al., 2005), a

cost model must allow users to create its own cost and benefits functions,

allowing them to drive the model down to the level of detail for which

sufficiently accurate data can be provided. This type of model provides some

basic functions and new ones can be derived from the original costs and benefits

functions.

 Clements et al. also recommend that cost modelers can do their work

with different levels of information. This vision of modeling is particularly

dominant in models that have the focus on defining an integrated cost model for

software reuse (Mili et al., 2001). In this approach, modelers can define

viewpoints for a group of cost and benefits factors, e.g., corporate viewpoint,

domain engineering viewpoint, product engineering viewpoint, and,

component engineering viewpoint.

 In addition, a cost model for software product line can be flexible as

possible to allow modelers to “plug” different cost and benefits functions. For

example, if an organization is trying to find out a cost model that fits its needs,

they can consider trying on SIMPLE in a first round, and next trying on

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

54

COPLIMO for the same set of data. Next, the organization can configure the

most suitable model for its use (Nóbrega et al., 2006).

 Another point to consider when creating a model is the definition of

different reuse scenarios for costs and benefits functions. It is particularly

important in the model defined by Böckle et al. (Böckle et. al., 2004) which

defines nine different scenarios in order to apply the basic costs functions. A

flexible cost model for product line must define its main reuse scenarios and

extends costs and benefits functions for calculating savings or losses for those

scenarios.

 Finally, the costs equations must express its values in a standard unit,

such persons-month, in order to present the magnitude of saving or losses of

reuse scenarios. Some basic cost models can perform this by using other units

(e.g. lines of code), but we consider that effort estimation is more effective for

decision-making tasks.

3.4.2. Reuse Scenarios
As cited previously, an effective cost model must define a set of reuse scenarios

and extend the costs and benefits functions to provide savings or losses

estimations. The dynamical aspects found in a specific organization justify the

creation of different scenarios and the use of them to provide different costs and

benefits viewpoints.

 Using cost models is frequently associated with a technical audience due

its mathematical and economics aspects. The use of predefined scenarios can

break down the complexity of a cost model by allowing the creation of wizards

for “running” the model. Each wizard can conduct a user in the task of analyzing

the scenario costs, avoiding entering unnecessary data. To permit the

application of reuse scenarios, a “default” scenario configuration is necessary for

the entire organization. This scenario can configure the basic cost factors, such

infrastructure and organizational needs.

3.4.3. Investment Analysis
According to the models described on the previous chapter, a set of common

economic functions is available to estimate whether or not to invest in a product

line initiative.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

55

 Thus, product line cost models does not have the focus on economic

analysis, but if we are considering an economic point of view for an organization

this aspect must be modeled. The output of an economic viewpoint highlights if

is valuable to invest or not in one or more reuse scenarios within a product line.

In this context, traditional economic functions can be used to perform cost-

benefits balance, e.g. Net Present Value (NPV), Return on Investment (ROI),

Internal Rate of Return (IRR), and so on.

 A reuse process can define a cost-benefit task analysis as the phase

immediately after the costs and benefits estimation for each scenario defined

previously. This phase can make a sheet balance over the costs associated with

different viewpoints. Some authors recommend that a decision analysis model

can be incorporated into the cost model in order to evaluate heuristically the

values returned by economic functions and decide which scenario is more

suitable for an organization.

3.4.4. Approaches for Implementation
When we are considering an implementation of cost, benefits and economic

functions, there are some ways to do that (Mili et al., 1999), (Clements et al.,

2005).

 The simplest case for cost function implementation is when the user

estimates previously each cost. Some of data can come from historical

information, such as the cost to build a stand-alone product.

 Another approach is to get the data from the available community

benchmarks, which can be used as a start point for organizations that have no

product line development records. Cost models, such as COPLIMO (Boehm et

al., 2004) or Poulin (Poulin, 1997b), defined cost drivers that reflect average

values for those set of data. Boehm et al. estimates that to build a reusable

component an organization will spent 150% of the cost for building it from the

scratch.

 Other implementation strategy is the creation of utility functions that will

help the estimation of a cost over a number of consecutive time periods.

Modelers can use a utility function to translate their assumptions about a

scenario into a value. This is particularly interesting when we are considering

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

56

that an asset has a value (or cost) and it may be incurred all at once or over time.

To perform cost-benefits analysis in non-numeric values there is a technique

defined by SEI (Kazman et al., 2002), called Cost-Benefit Analysis Method

(CBAM) for performing costs analysis on architecture decisions and quantifying

the benefits associated with them.

 One point to consider in this study is a lack of some abstraction layers for

the cost models. In some of them, it is possible to “plug” different costs, benefits

and economics functions, in order to evaluate the most suitable for a specific

organization.

 Finally, one important point to consider is the “divide and conquer”

nature of cost models implementation for product lines. Additional cost

functions can be defined by decomposing the basic functions into other

specialized functions. Peterson (Peterson, 2004) suggests that costs can be

decomposed into factors. For example, for establishing architectural costs the

model can take into account domain analysis costs, target architecture costs,

technology standard costs, migration strategy, and so on.

3.5. Summary of the Study
Table 3.1 summarizes the set of features presented in this study. It makes a

relationship between the most relevant cost models for software product line

and the features discussed previously.

 By analyzing Table 3.1 it is noted that just a few models have focus on

investment analysis. It also noted that the models do not explore features such

as pluggable functions and reuse scenarios. Only one model defines a decision

analysis model to present different options of investment based on the

variability of data entry. Some of the models studied cite the need to implement

such decision models to help manager on decision-making tasks.

Chapter 3 – Software Product Line Cost Models: State-of-the-Art

57

Table 3.1 – A Summary of Features of PL Cost Models

Cost
Model

Features

- Cost
Function

Benefit
Function

Predefined
Reuse

Scenarios

Viewpoint

Pluggable
Function

Investment
Analysis

Decision
Analysis
Model

Poulin X X - - - - -
ABC X X - - - - -
Convergys X X X - - X -
SIMPLE X X X - X - -
COPLIMO X X - - - - -
SoCoEMo-
PLE

X X - X - X -

qCOPLIMO X X - - - - -
Tomer X X X - - - -
Schmid X X - - - X X

 We can state that, to be effective, a cost model for software product lines

must have the flexibility to define new reuse scenarios in order to provide

different cost visions (viewpoints). It is recommended that after the investment

analysis task, some type of simulation can be done to decide for different

scenarios or to mitigate the risks associated with them.

3.6. Chapter Summary
Applying a cost model for a reuse program is an effective way to analyze

whether or not to invest in a product line approach. However, the models

available fail to provide an integrated vision of costs, benefits and economics

analysis for different viewpoints and scenarios.

 This chapter surveyed the most significant cost models for software

product lines and made a comparison among them, bringing to the light a set of

features that defines an effective model.

 Based on these features, the next chapter will presents a proposal for an

integrated cost model for software product lines.

InCoME: Integrated
Cost Model for Product
Line Engineering

Based on the study conducted in Chapter 2, which describes the main features

of a reuse cost model, and its specialization for software product lines, described

in Chapter 3, this work proposes the Integrated Cost Model for Product

Line Engineering (InCoME), which will produce cost and benefits values in

order to help an organization to decide if an investment in a product line is

worthwhile. Accordingly, InCoME focuses on providing different return on

investment visions for a set of reuse scenarios and it includes the possibility to

simulate a range of input parameter values to evaluate the investment for those

scenarios.

In addition, a proposal for using the model is discussed here and the

requirements for its implementation are presented. The chapter highlights also

the features of InCoME, its foundations and basic elements.

4.1. Introduction
There are several economic models dealing with software development costs for

reuse (Lim, 1996), (Mili et al., 2000). However, a few models deal with Product

Line Engineering (PLE) cost estimations. Moreover, most of the existing models

do not have tools supporting them. Since the PLE appears to be a very attractive

approach for software development with large-scale reuse, we are interested in

economic models for PLE.

 Managers, developers and others can estimate the intended PLE benefits

through InCoME. The study performed on the previous chapters indicates that

4

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

59

Mili's Integrated Cost Model for Reuse (Mili et al., 2001) and the Structured

Intuitive Model for Product Line Economics (SIMPLE) (Clements et al., 2005)

could be used as a basis for InCoME. In addition, the model incorporates the

Monte Carlo simulation technique (Malvin et al., 1986) in order to allow

stakeholders to mitigate the risks for different visions of an investment. The

foundations of the model are discussed on the next sections and all features

used for its creation are detailed.

 Before understanding InCoME it is interesting to take into account the

main features that come up with a model. According to Hartmann et al.

(Hartmann et al., 2006), a model can be defined as “a theoretical construct that

represents something, with a set of variables and a set of logical and

quantitative relationships between them”. Models in that sense are constructed

to enable reasoning within an idealized logical framework about these processes

and are an important element of scientific theories. A model may make explicit

assumptions that are known to be false (or incomplete) in some details. Such

assumptions may be justified on the grounds that they simplify the model,

allowing the production of acceptably accurate solutions.

 Several economic models for software reuse have been developed and

applied to evaluate various aspects of software development projects. These

have been created mainly for the purposes of either facilitating more accurate

software project planning, supporting managers in making decisions about

reuse scenarios or predicting the effects of processes changes. Each of these

models accomplishes their purpose by estimating overall net measurements of

the process, such as development time, cost and quality. The obvious relevancy

of this domain to our research lies in our intended adoption of two of these

models as a basis upon which to create InCoME.

 Based on the cases studies presented by the cost models from the

previous chapters, InCoME has a clear focus on providing different viewpoints

for costs and benefits for a product line, encapsulating these factors into reuse

scenarios. Reuse scenarios will be the basis for InCoME investment analysis,

which will evaluate if a specific scenario is valuable from an economic point of

view.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

60

4.2. Overview of the Model
As defined in Chapter 2, a reuse cost model is the notation of the explicit costs

and benefits associated with a reuse program (Rothenberger et al., 2004) and

managers in their decision-making tasks can use it through an economic

rationale. When we are considering the reuse adoption through product line

engineering, the cost model associated with it can define reuse scenarios

(Clements et al., 2005) in order to provide different costs and benefits

viewpoints (Mili et al., 2001).

 To be effective, a cost model must answer the questions regarding the

managers understanding on current and future product-line-related parameters

into cost and return on investment (ROI) expectations associated with a product

line approach (Muthig et al., 2006). It also allows the organization instantly gets

feedback on potential product line effects and improvements.

 A summary of the model defined in this chapter can be viewed on Figure

4.1, which denotes the structure of InCoME in a block diagram notation. It is

composed by the following elements: a Cost Factors Layer, which

encapsulates a set of Cost Functions; a Viewpoint Layer composed for

three Viewpoints, each of them encapsulating a set of Reuse Scenarios; an

Investment Analysis Layer with a set of Economic Functions; and, a

Simulation Layer.

 Each layer defined for InCoME plays a specific role during the evaluation

of an investment for a product line. The idea behind its definition in form of

layers is to modularize the evaluation through three levels of estimations:

• Cost Estimation. It addresses the estimation of the basic cost factors

that are related with a product line.

• Benefit Estimation. It is responsible to produce estimations

concerning one or more reuse scenarios. It will be expressed in terms of

cost savings or losses in adopting such scenarios.

• Economic Estimation. It reflects the estimation over an investment

cycle for the cost savings found in the benefits estimations. It produces

values to help the decision concerning economics aspects of a product

line.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

61

INTEGRATED COST MODEL FOR PRODUCT LINE ENGINEERING

Cost Factors

Viewpoints

Investment Analysis

Simulation
Model

ORGANIZATIONAL

STAND-ALONE

CORE ASSET
BASE

REUSE LEVEL

PRODUCT
EVOLUTION

UNIQUE PARTS

ASSET
EVOLUTION

NPV ROI PAYBACK

DOMAIN
ENGINEERING

REUSE
SCENARIOS

PRODUCT
ENGINEERING

CORPORATE
ENGINEERING

REUSE
SCENARIOS

REUSE
SCENARIOS

Cost
Estimation

Benefit
Estimation

Economic
Estimation

Figure 4.1 – Integrated Cost Model for Product Line Engineering (InCoME)

 Figure 4.2 presents InCoME elements through a meta-model denoted by

using UML. In this figure, the relationships between the elements can be viewed

and it can be considered as a basis for the model instantiation3.

3 All attributes and methods are not described in this diagram due to make it as simple as possible.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

62

Figure 4.2 – InCoME Meta-Model

The Cost Factors Layer is the lowest level of the model and it is responsible to

feed upper layers with cost estimations computed by its cost functions. The cost

functions address the cost estimation by seven product line engineering factors:

• Organizational. The cost related with upfront investments to establish

a product line infrastructure;

• Core Asset Base. The cost to build a set of reusable assets for a specific

domain;

• Unique Parts. The cost associated with the development of unique

parts of software for a product within a product line;

• Reuse Level. The level of reuse related with the integration of reusable

assets into a product;

• Stand-Alone. The cost to build a product in a stand-alone fashion, i.e.

outside a product line regime;

• Product Evolution. The cost to evolve a product in a stand-alone

fashion;

• Asset Evolution. The cost to evolve the core asset base through product

line engineering.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

63

 The Viewpoint Layer is fed by the values calculated by the Cost Factors

level. This level uses those values to calculate the functions for each Reuse

Scenario, which expresses the cost savings (or losses) vision of a specific type of

stakeholder. InCoME applies viewpoints for three product line engineering

cycles: domain engineering cycle, product engineering cycle and corporate

engineering cycle. We are assuming that this set of viewpoints is adequate for

representing the different reuse visions for product line engineering. All these

viewpoints are detailed in next sections.

 Next, the values produced by each scenario are classified according to its

viewpoints and they are submitted to the Investment Analysis Layer, which is

responsible to make several economic calculations for each viewpoint. InCoME

can make investment computations for three economic functions: Net Present

Value (NPV), Return on Investment (ROI) and Payback Value (PV).

Finally, the economic values computed for each viewpoint can be

simulated by the Simulation Model, which applies Monte Carlo simulation

technique (Malvin et al., 1986) to achieve certain NPV, ROI and PV predictions

for ranges of values through product line engineering cost factors.

In the next sections will be presented the objectives of the model and its

elements are detailed.

4.2.1. Objectives
According to the structure presented in the Figure 4.1, each element plays a

specific role when the model is used. At general, InCoME was defined under the

need to answer the following questions:

Q1. Does the model express the different viewpoints of reuse for

stakeholders of an organization?

Q2. Does the model perform an investment analysis over the

organization viewpoints?

Q3. Does the model can simulate reuse scenarios through its cost

parameters in order to help the decision-making tasks?

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

64

Based on the expected answers for these questions, the main objective of

the Integrated Cost Model for Product Line Engineering (InCoME) can be stated

as follows:

 “InCoME is defined to perform reuse investment analysis from different

viewpoints of an organization that are adopting (or has an intention to adopt)

the software product line approach in order to help stakeholders in their

decision-making tasks”

4.2.2. Model Assumptions
When we are considering the definition of InCoME, some assumptions must be

taken into consideration in order to apply it:

• Reuse Process. Despite InCoME has been defined under the umbrella

of the RiSE process (Almeida, 2007), it must be considered a process-

independent model, since the set of activities defined for a process that

uses InCoME should not have a direct impact on cost factors estimation.

However, it makes no sense to apply it in a context different of a product

line, since its essence is driven by a product-based approach;

• Product Family. Assuming the model has a product-based approach,

we can state that the environment where it is to be applied has an

existing family of products sharing some common features between

them. Moreover, the model is not affected by the way the products were

built: independently in a stand-alone fashion or over a product line

engineering regime;

• Reuse Cycles. Product line frameworks, such as the defined by SEI

(Clements, 2002) have a well-defined group of activities where reuse

happens. As presented in Chapter 3, SEI framework defines three

fundamental sets of practices (domain engineering, product engineering

and management). Despite InCoME be an independent-process model,

we are assuming that an organization using it has at least its reuse

activities performed by three cycles (Mili et al., 2001): (i) Domain

Engineering cycle, (ii) Product Engineering cycle and (iii) Corporate

Engineering cycle. These cycles are explained below:

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

65

� Domain Engineering Cycle. This cycle addresses all activities

related with the analysis of commonalities and variability of core

assets, construction, certification, and repository insertion. Thus,

all activities related with domain engineering have its costs

estimated during this cycle;

� Product Engineering Cycle. In this cycle all activities to

develop a product occur, including the development of the unique

part of the product;

� Corporate Cycle. It is related with establishment of the product

line infrastructure and the issues associated with the reuse process

adopted by the organization.

This assumption is particularly important when we define the different

investment viewpoints for the stakeholders, as we can see later in this chapter.

4.3. The Foundations
The foundations of the model reflect the basis in which it was defined, and they

can be considered as a guideline to describe the elements of InCoME. This

model was written using the assumptions and definitions of two fundamental

models for estimating and predicting costs and benefits for software reuse in

general. Moreover, since InCoME defines a simulation model, a popular

technique to generate random input values for the cost factors was used. The

foundations used as guideline for InCoME are:

• Integrated Cost Model for Software Reuse (Mili et al., 2001). This

model was chosen to be the basis for the viewpoints, the economic

functions and the investment analysis foundations;

• Structured Intuitive Model for Product Line Economics

(SIMPLE) (Clements et al., 2005). This model details the cost and

benefits functions and it has the definition of nine reuse scenarios for a

product line. InCoME uses a reduced subset of SIMPLE scenarios, with

some extensions;

• Monte Carlo Simulation (Malvin et al., 1986). This technique

addresses uncertainty for the model and it was chosen to be the basis to

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

66

generate a range of random input parameters according to a set of well-

defined probability distributions.

4.3.1 Integrated Cost Model for Software Reuse
The work performed by Mili et al. (Mili et al., 2001) is an extensive study of the

state-of-the-art for software reuse cost models. The same type of study has

already been done by Wiles (Wiles, 1999) where the main features of a generic

cost model were presented, but no model was explicitly defined in such work.

Lim (Lim, 1996) also had aggregated the main aspects of a cost model into a

group of general features, and at the end of his work he concludes with

recommendations of how to select an economic model.

 The main differential of the work presented by Mili et al. is the proposal

of a more comprehensive model, characterized by a set of generic features. On

the other hand, the model does not address the economic features for product

line engineering and its costs and benefits functions are achieved by traditional

component-based development approach. Those features were extensively

studied by revisiting a large number of existing cost models for software reuse,

extracting from them the following general features, used by InCoME:

• Investment Cycles. The model defines four cycles that can be used to

provide different corporate decisions: Corporate Investment cycle,

Domain Engineering cycle, Application Engineering cycle, and,

Component Engineering cycle. All these cycles can estimate the Return

on Investment (ROI) for an organization that is adopting a reuse

program. InCoME uses this approach in order to define its viewpoints for

the same set of investment cycles, except the component engineering

cycle;

• Cost Factors. They can be considered as a start point for costs and

benefits estimations within investment analysis, representing the

organization defaults for such cost factors. InCoME encapsulated its cost

factors in the Investment Analysis Layer by reusing the concepts of

Investment Cycle, Start Date and Discount Value. The other cost factors

for InCoME are supplied by the model defined by Clements et al.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

67

(Clements et al., 2005) which are more specific to a product line

engineering approach. They will be presented later in this chapter;

• Economic Functions. The functions used to assess the worthiness of

an investment decision. The functions used by InCoME come from the

Mili’s model are: Net Present Value, Return on Investment, and Payback

Value;

• Viewpoints. Based on the investment cycles, the viewpoints defined by

Mili et al. reflect the different economic visions that can exist within an

organization. They are used for different stakeholders by using distinct

return on investment equations for its specific areas of actuation. We

agree with this concept and InCoME was influenced to provide a similar

set of corporate visions with some extensions. The difference of InCoME

viewpoints from the Mili et al. viewpoints relies on the application of

costs and benefits functions based on a software product line

environment, which is product-based, in opposition to a component-

based approach. It helps the model to reflect the real nature of a product

line, with the benefit of the viewpoints.

Mili et al. model defines another set of features that characterizes a

generic cost model for software reuse, such as the type of reuse organizations

and a list of hypotheses for cost and benefits estimation. In this dissertation, it is

our intention to derive a specific cost model for a product line context and it

implies in not using those aspects.

When defining InCoME we are concerned in its practical utilization for

the managers within an organization. The model defined by Mili et al. has the

same concerns about this and it describes a framework in order to propagate the

costs for one investment cycle to a subsequent cycle. For example, a corporate

manager would assess the impact of the reuse program by taking into

consideration the costs of the reuse infrastructure as well as domain engineering

costs, which are accumulated across different domains. He or she could also

balance these costs against the benefits measured from quality and productivity

gains achieved in application engineering cycle (which are accumulated across

the development projects). Moreover, a manager of the organization that are

producing the core asset base would assess the impact of a domain engineering

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

68

effort by considering the cost of producing that assets against the benefits

reaped from selling them to project managers.

The process to use InCoME is influenced by Mili’s model in the following

terms:

• All investment cycle decisions can be quantified in economic terms and

they are justified by an economic rationale;

• and, All investment cycle decisions provide different viewpoints for costs

and benefits and they are interconnected (a change in a cost factor in one

viewpoint has a direct impact in other viewpoints).

4.3.2 Structured Intuitive Model for Product Line
Economics (SIMPLE)
The model defined by Clements et al. takes into account the emerging adoption

of product line engineering by organizations. SIMPLE are related with the

following software product line practices defined by the Software Engineering

Institute (Clements et al., 2004): architecture evaluation, data collection,

metrics tracking, Make/Buy/Mine/Commission analysis (Clements et al., 2001),

scooping, technical planning, technical risk management, tool support, business

case building, acquisition strategy development, funding, launching and

Institutionalization, market analysis, and technology forecasting.

Even where costs and ROI calculations are not an essential part of these

practices, SIMPLE provides to decision makers a way to evaluate different

economic visions for a product line. The cost models available in the literature

lack on handling economic aspects for product line engineering. As presented in

Chapter 3, there are a few models concerned with this approach (compared with

the number of models addressing basic reuse cost models).

 The other relevant models studied in this dissertation are the Poulin's

Measuring Software Reuse (Poulin, 1997b) and COPLIMO (Boehm et al.,

2004). Despite Poulin's model considers the use of assets in developing

individual products and the potential for cost savings, it do not take into

account the dynamic scenarios of product lines and its implications. As with

Poulin, COPLIMO is essentially a reuse cost model, assuming the use of a set of

assets for building a set of related products. COPLIMO goes further than Poulin

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

69

by considering variations in the cost of reuse and in considering maintenance,

but it makes some simplified assumptions as well. On the other hand,

COPLIMO relies on the availability of a range of parametric values that must be

accurately calibrated, making it less suitable for a non-technical audience.

 The main advantage of SIMPLE is its “divide and conquer” strategy,

which means to define costs and benefits functions into other functions by

decomposition.

 In this sense, we agree that SIMPLE, as your name promises, is a simple,

structured and intuitive model, allowing a wide range of people inside an

organization to view the level of information that is most useful for their jobs. In

the context of this dissertation, we are electing the following SIMPLE features

for InCoME definition:

• Cost Functions. SIMPLE presents seven cost functions that reflect the

costs of a product line. InCoME uses this set of cost functions as a basis

for the entire model.

• Reuse Scenarios. According to the cost functions, SIMPLE provides

nine reuse scenarios in order to estimate the costs and benefits for

several situations that may occur in a product line.

 When defining InCoME we are concerned on how the reuse scenarios can

provide different viewpoints for costs and benefits for a product line, in order to

help managers in decision-making tasks. One issue to consider in InCoME

definition is the mapping between the set of reuse scenarios (derived by

SIMPLE) and the viewpoints (derived by Mili's model), which will be the basis

for the investment analysis. A solution for this is discussed in the section where

the elements of the model are defined.

4.3.3 Monte Carlo Simulation
The idea behind Monte Carlo simulations gained its name and its first major use

in 1944 (Pllana, 2000), in the research work to develop the first atomic bomb.

The scientists working on the Manhattan project (Manhattan, 2004) had

intractably difficult equations to solve in order to calculate the probability with

which a neutron from one fissioning Uranium atom would cause another to

fission. The equations were complicated because they had to address the

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

70

complicated geometry of the actual bomb, and the answer had to be right

because, if the first test failed, it would be months before there was enough

Uranium for another attempt. They solved the problem with the realization that

they could follow the trajectories of individual neutrons, one at a time, using

teams of humans implementing the calculation with mechanical calculators

(Feynman, 1985), (Manhattan, 2004). At each step, they could compute the

probabilities that a neutron was absorbed, that it escaped from the bomb, or it

started another fission reaction. They would pick random numbers, and, with

the appropriate probabilities at each step, stop their simulated neutron or start

new chains from the fission reaction.

 In the context of InCoME definition, the Monte Carlo simulation was

chosen as the way to manage uncertainty that can occur in the input values of

the model. At last instance, this technique allows the model to improve the risks

mitigation when analyzing product line engineering adoption. A more formal

definition of Monte Carlo simulation method is presented in Appendix A.

4.4. Elements of the Model
As cited in the previous sections, InCoME is composed by a group of elements,

which each of them has specific responsibilities. In the next sections we describe

the details of those model elements.

4.4.1. Cost Factors
4.4.1.1. Demand Function

 In order to define the cost and benefit functions for product line engineering, it

is necessary to establish the lower level of granularity for cost factors. We can

accomplish this by the definition of a demand function. Let first define a

product line in terms of its products.

 Let P a product line with n software products. Each product is denoted as

pk, where k = {1, 2, 3, ..., n}.

 Next, it is necessary to define pk in terms of its assets and requirements.

According to Clements et al. (Clements et al., 2005), in a product line every

asset is managed as a core asset and it is available for using within a product

development activity. So, let assume that pk is composed by two distinct sets of

assets: Unique Assets and Shared Assets.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

71

• Unique assets. This set of assets is related with both software and non-

software of a product that are not based on the core asset base.

• Shared assets. This is a subset of the core asset base and it addresses

the shared functionality needed for pk.

 Let now assume that the unique set of i assets for kp , namely kU , is

expressed as follows:

{ }ik uuuuU ,...,,, 321= (Equation 27)

 Next, we make the same assumption for the set of m shared assets that

has been used by kp . In this point it is necessary to define the set of all j assets of

P, denoted by PA , as follows:

{ }jP aaaaA ,...,,, 321= (Equation 28)

 The set of shared assets required for kp development, denoted by kC , is

defined by { }mk ccccC ...,,, ,321= (Equation 29), where Pk AC ⊂ , and the

intersection of the j elements of PA with the m elements of kC has the same

functionality4.

 Then, the total set of assets for pk, denoted kA , is defined by the following

expression:

kkk CUA U= (Equation 30)

 Now, we assume that each set of assets kA for pk has an association with a

group of requirements, namely kR . In order to estimate the size of kA , we need a

unit that may represent the amount of functionality for kR . One possible

standard unit to perform that representation is Function Points (Albrecht,

1979). It measures the size of functionality that is encapsulated into a

requirement and can be used for the purpose of this dissertation. In addition,

we are defining a mapping function A
kM that returns the size, in function

points, of the set of assets kA that has its functionality represented by kR :

()k
A
k RMM = (Equation 31)

4 We can translate the term functionality as the set of requirements needed to build the asset.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

72

 Next, we extend the previous mapping function by the definition of a

Demand Function, namely ()iAD , which returns the size per time unit

necessary to develop the asset iA , as follows:

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∗=

p
ii T

AMAD 1
 (Equation 32)

 where pT is a planning period at which the asset is going to be analyzed.

As a consequence, using equations 30 and 32, we can infer the demand

function for kA using the following equation:

() () ()kkk CDUDAD += (Equation 33)

 Replacing the terms of equation 33 by equation 32, we have the

demand function expressed as follows:

() () ()
p

kk
k T

CMUM
AD

+
= (Equation 34)

 The equation 34 cannot be used as a function to estimate the cost to

develop a product pk. It is only estimating the amount of functionality over a

period of time to develop its set of assets, but it does not take into account the

costs for development with reuse. The cost model defined by Poulin et al.

(Poulin, 1993) has been addressing this subject, distinguishing between the

development for reuse and development with reuse.

 Therefore, we agree with the vision of Mili et al. (Mili et al., 2001) that

states that the cost of a reusable component is defined by the cost to develop it

for reuse plus the cost to certify it plus the cost to insert it into a component

library (or into a component repository). In this sense, it is reasonable to say

that the cost to build a core asset denoted by C(Ai) can be expressed by the

following equation

() () () ()iiii AINSACERTADAC ++= (Equation 35)

 where ()iACERT is the demand function for iA certification and ()iAINS

is the demand function for library insertion for iA . This approach does not take

into account the time influence on the asset cost, since the costs of certification

and library insertion could be diluted over time. This issue is addressed by

reuse scenarios equations, which takes into consideration the effect of time in

the cost savings. Despite Mili et al. original equations deals with the effect of

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

73

operation and maintenance of a reusable component when defining its episodic

costs, we are adopting the vision of SIMPLE that considers those costs in the

level of domain engineering cycle.

 One point to consider here is that the demand function for an asset (or

for the entire core asset base) will be considered as a transfer price (Lim,

1998) for the subsequent engineering cycles.

4.4.1.2. Cost Functions

The first step on the cost functions definition for InCoME was given in the

previous section when we defined the lowest level of costs, specifically to the

component-level costs. With these cost equations, we can derive another set of

functions for the remaining cost factors.

• Organizational. In the corporate level, an organization wants to

estimate the costs of adopting product line engineering. We can state that

the cost to establish a product line is related with the costs of product

engineering and domain engineering. Moreover, we must consider that

an organization accounts for overhead when preparing itself to product

line establishment. SIMPLE (Clements et. al., 2005) defines a set of cost

drivers which contributes to the organizational costs, namely Corg:

� Internal reorganization costs;

� Process improvement;

� Training;

� Other organizational remedies costs.

Mili et al. model (Mili et al., 2001) defines some additional cost factors

that influence the organizational costs:

� Purchase and installation of a repository (assuming the repository

costs will be divided equally between all projects that shares the

core asset base);

� Operational costs to manage the product line infrastructure.

• Core Asset Base. This cost function returns how much development

effort is expected for a core asset base for a specific domain. Both models

(Mili et al. and SIMPLE) consider this cost is influenced by the effort to

perform domain analysis and design for reuse. Let ()δDA a function that

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

74

returns the costs for domain analysis for a specific domain δ , which can

be measured by the following factors:

� Commonality and variability analysis effort;

� Product line scope definition;

� Design and evaluation of a generic software architecture;

� Build of the Production Plan;

� Establishment of the development environment;

� Build of a testing architecture;

� Other artifacts development effort related with core asset building

(except code).

SIMPLE defines a cost function, Ccab, to express the costs to develop a

core asset base to a particular scope within a domain. Assuming δA as the

set of assets of δ , InCoME calculates this factor using the following

equation:

() () ()∑
∈∀

+=
δ

δ
AA

icab
i

ACδDAC (Equation 36)

where ()iAC is the cost to develop the asset iA , and iA belongs to the set

of assets of δ .

• Unique Parts. This factor, denoted uniqueC , represents the cost to develop

the unique parts of the product that are not based on assets in the core

base asset. This cost factor can be estimated by the demand function for

the unique set of assets for a product Pk (defined by equation 27) and

calculated using Equation 31, as follows:

() ()kkunique UDpC = (Equation 37)

• Reuse Level. This factor, denoted reuseC , represents the cost to develop a

product reusing core assets from a core asset base. Creuse can be estimated

by the effort of using the core asset base for pk development. These cost

factors includes:

� Cost of locating a core asset;

� Cost of checking out a core asset of a repository;

� Cost of tailoring;

� Cost to perform extra tests.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

75

 Frequently, this cost factor is expressed as a fraction of the effort

to build a product out of the product line umbrella. Some case studies

had indicated that this factor is about 7% of the cost of building the

product from scratch (Böckle et al., 2004).

• Stand-Alone. This cost factor represents the cost of development for a

product in a stand-alone fashion, denoted prodC . In this way, each product

is built from scratch, with no reuse of core assets. In general, prodC can be

estimated using traditional cost models (e.g. COCOMO, Function Points

Analysis, and so on) or it relies on historical data from an organization.

So, the cost of building n products independently, Cind, without sharing

the core asset base is expressed by the following equation:

()∑
=

=
n

k
kprodind pCC

1

(Equation 38)

• Product Evolution. This cost function returns the cost to evolve a

product pk in a stand-alone fashion and Cevo denotes it. This function is

normally expressed as a percentage value of the cost of building a

product in stand-alone fashion. According to Böckle et al. (Böckle et al.,

2004), the cost to evolve a product pk is roughly estimated in 20% of the

cost to build it from scratch.

• Asset Evolution. As the same way as Cevo, this cost factor namely Ccabu,

can be expressed as percentage value of the cost to build a core asset base

from scratch. This factor is influenced by new version required for an

asset (new commonalities exposed) and bugs fixes in existing core assets.

Böckle et al. (Böckle et al., 2004) estimates this value as 10% of Ccab.

4.4.2. Viewpoints
The economic benefits of software reuse have long been recognized. In general,

they can be divided into two major categories (Favaro et al., 1998):

• Operational Benefits. They consider factors such as improved quality,

higher productivity, and reduced maintenance costs;

• Strategic Benefits. Includes the opportunity to enter in new markets

and the flexibility to respond to competitive forces or changing market

conditions.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

76

This section defines a set of benefit functions for product line engineering

that can be categorized as operational benefits. It is known for reuse community

that strategic benefit functions are difficult to develop due to their “intangible”

nature. It is out of the scope of InCoME to define such functions. The economic

analysis generated by operational benefits estimation can be considered as a

basis for strategic benefits functions (Brealey et al., 1996).

As cited previously, InCoME has as assumption a set of engineering

cycles where reuse happens. In order to distinguish between the different

investment cycles, we are defining a set of viewpoints for product line

engineering. Each viewpoint has a set of cost and benefits functions that will

reflect if an investment is worthwhile on it. Each set of cost and benefits

functions for a given viewpoint is called a reuse scenario.

The main objective to define viewpoints is the possibility of decision-

making according to the point of view from different stakeholders (Mili et al.,

2001). The model do not addresses a mapping of a specific set of stakeholders

with the viewpoints, but we can assume that the visions of investment for a

product line can be presented according to the Table 4.1 below. The column

Viewpoint presents the investment vision and the column Stakeholders shows a

possible audience for that vision.

Table 4.1 – Viewpoints and Stakeholders

Viewpoint Stakeholders

Domain Engineering Domain Engineer, Core Asset

Engineer

Product Engineering Product Engineer, Project Manager

Corporate Engineering Project Manager, Financial Manager

The strategy to define the reuse scenarios is basically to map the vision of

investment of each viewpoint to one or more cost factors, which encapsulates

the cost estimations for that viewpoint. Next, we present the InCoME

viewpoints and the reuse scenarios adapted for them.

4.4.2.1. Domain Engineering Viewpoint.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

77

This viewpoint describes whether or not to initiate a domain engineering effort

in a specified domain. It will be achieved by measuring the total benefits for

the set of reusable assets that compose a domain.

Reuse Scenario. Our target here is to evaluate if the building of a set of

assets can saves costs to the domain engineering cycle. The strategy to perform

it is to assume that the benefits for this cycle are the sum of the benefits of all

assets built for a specific domain less the cost to build the core assets for the

same domain. The benefits in developing reusable assets can be quantified in

terms of how fast a product can be build reusing these assets, which means

gains in terms of productivity, and the value-added in quality for the core asset

base (Mili et al., 2001). It is also known that there is a linear relation between

the gains in productivity and quality and the number of times an asset is reused

in many products in a product line (Mili, 1996). In this sense, the benefit

function for core asset base can be expressed by the frequency of use of reusable

assets for a period of time. We are assuming here that the frequency of reuse for

an asset has a direct impact in productivity and maintenance (and hence, it has

impact in quality) for the entire product line. Formalizing this concept let iA a

core asset and ()iAB the following benefit equation:

() () ()iii ADtAfreqtAB ∗= ,, (Equation 39)

 where ()iAfreq is the frequency of use of iA in a period of time t, and

()iAD is the demand function for iA . To calculate the cost savings or losses it is

important to take into account the cost to build the core asset base. According to

the function defined by Equation 39, we can extend it for the set of assets of a

product line, denoted by δA , which was built for a specific domainδ . Next, we

derive the reuse scenario for domain engineering viewpoint, denoted ()δAB , as

the sum of the benefits for all assets built as part of domain, within a period of

interest t, less the cost for building the core asset base for the same domain:

() () ()∑ −=∈∀ tCtABtABAA cabii ,,,, δδδ (Equation 40)

4.4.2.2. Product Engineering Viewpoint.

The investment decision that appears in this viewpoint reflects if whether or not

to invest in product line engineering for a given development project. This can

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

78

be achieved by measuring the cost savings to build products using a product

line approach versus the cost of build products independently.

Reuse Scenario. Here the idea is to find out if there is a cost savings or

losses when applying a product line approach in order to develop a product. We

can use the set of equations defined previously to calculate the cost to build a

product sharing the commonalities of the core asset base, within a product line.

In this point, we have to take into account a period of interest where an event

can occur. This is particularly important under reactive product line

development (Clements, 2002), (Clements et al., 2004), which focuses just-in-

time core asset development, as opposed to proactive approach in which the

entire core asset base is built up front.

If we consider the development of a product pk for a domainδ , where pk

is composed by the set of assets Ak, with δ∈kA , then the cost of pk, namely

()kpC , can be estimated by the sum of the effort to develop the unique parts of

the product (uniqueC) and the reuse effort to integrate Ak to the product (reuseC), as

follows:

() () ()kreusekuniquek pCpCpC += (Equation 41)

Assuming a period of interest t to develop a product pk, the reuse scenario

for product engineering viewpoint, ()kpB is the difference between the cost to

build pk independently and the cost to build it from a product line

infrastructure. The first term is expressed simply by Cprod. To estimate the cost

of the second term we have to take into account the cost of establishing a

product line infrastructure to build pk. Moreover, the cost to build the core asset

base for pk is also taken into consideration5 as well as the cost to build pk itself.

So, the reuse scenario for this viewpoint is expresses as follows:

() () () () ()[]tpCtACtpCt,pCtpB kkcabkorgkprodk ,,,, ++−= (Equation 42)

4.4.2.3. Corporate Engineering Viewpoint.

This viewpoint addresses if whether or not to initiate a corporate reuse program

thought the adoption of product line engineering approach. It will be achieved

5 We are assuming the development of the first generation of a product line, so the core asset base is
simply build for pk development.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

79

by measuring the total benefits for all products within a product line

instantiated to an organization.

Reuse Scenario 1. In this viewpoint, we are interested in estimating all

benefits derived from product line engineering adoption within an organization.

It implies in taking into account all benefits measured on the product

engineering cycle and calculate the potential cost savings or losses for a set of

reuse scenarios. InCoME scenarios were clearly influenced by SIMPLE

scenarios (Clements et al., 2005) and some of them were used as a guideline to

describe the viewpoint for corporate cycle. Again, the strategy here is a mapping

between a viewpoint and the cost factors in order to produce a set of reuse

scenarios. The first scenario returns the cost savings or losses for a product line

adoption. Suppose that an organization wishes to choose between building a set

of products as a software product line and building them as a set of stand-alone

products that do not share the core asset base. Then, the first scenario function

stands for the cost to build n products independently less the cost to build the

same set of products using a product line. Using t as a time period of interest,

and equation 42 extended for n products, we have the following benefit equation

for the product line P:

() () () () () ()()⎥
⎦

⎤
⎢
⎣

⎡
−= ∑∑

n

=k
kreusekuniquecaborgk

n

=k
prodP t,PC+t,PC+tC+tCt,pCtB

11

(Equation 43)

In opposition to equation 42, this function captures the total organizational

costs as well as the total core asset base costs.

 Reuse Scenario 2. Next, we can suppose that an organization wishes to

know the benefits in setting up and evolve a software product line. In this case,

the reuse scenario addresses the difference between the evolution of n products

in a stand-alone fashion (evoC) and the costs to evolve the same set of product

through a product line regime. The second term of the equation takes into

consideration the fact that all organizational costs for a product line were

already incurred and only a portion of the costs of build a core asset base were

accounted (Ccabu). In addition, the costs to update the unique parts of the

product are merely a fraction of the original part. So, assuming Funique as the

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

80

factor to express the percentage of Cunique update the equation is expressed as

follows:

() () () () ()()⎥
⎦

⎤
⎢
⎣

⎡
∗−= ∑∑

n

=k
kreusekuniquekcabuk

n

=k
evoP t,pC+t,pt,pCt,pCtB

1
unique

1

' CF+

(Equation 44)

One point of discussion here is that a product might have um specific

number of releases in a period of interest. Despite SIMPLE does not directly

take into account this factor (Clements et al., 2005) we are considering it for this

scenario. Assuming a number of releases nr for a period of interest t, we can

rewrite equation 44 to express the cost savings or losses simply by multiplying

nr and ()tBP
' .

Another point to discuss is the fact that the benefits accrued from domain

engineering cycle were not accounted for corporate engineering viewpoint.

According to Mili et al. (Mili et al., 2001), the domain engineering benefits are

considered values of asset sales to projects and in the corporate level this

cost transfer is an internal operation, which does not represent a gain or a loss.

Accordingly, the benefits for corporate viewpoint are placed only by the

potential benefits of product engineering cycle.

4.4.3. Investment Analysis
The investment analysis layer of InCoME has as main objective to evaluate if the

benefits accrued across a product line engineering cycle are valuable in an

economic point of view. Looking at the literature on engineering economics

(Brealey et al., 1996), (Trigeorgis, 1996), (Favaro et al., 1998), (Lim, 1998), it is

possible to identify a set of economic functions that can be used to evaluate the

worthiness of an investment decision.

In order to perform the investment analysis, the organization must define

a set of economic parameters that will reflect the corporate strategy, which is

based on an economic rationale. According to Favaro et al. (Favaro, 1998) those

parameters can be summarized by the following factors:

• Investment Cycle. Denoted by Y, it describes the time period at which

the investments will be analyzed. This value is often expressed in years

and it is counted from a Start Date, denoted by SD.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

81

• Start Date. Denoted by SD, it describes the date at which the

investment cycle starts and the initial costs for the product line are

incurred.

• Discount Rate. Denoted by d, it is an abstract quantity that reflects the

time value of money.

 Next, a set of economic functions will take these factors in account to

perform the calculations.

Net Present Value (NPV). In the context of this dissertation, we are

interested in calculate the present value for a given investment to develop n

products for a product line. The concept of present value is an essential tool for

giving proper weight to all present and future costs and benefits resulting from

an investment. Based upon the simple notion that a monetary unit today is

worth more than the same unit tomorrow, known as the “time value of

money”, engineering economic field define the Discounted Cash Flow

(DCF), which “weights” the relative contributions of cash flows that are more or

less distant in the future with the application of a discount rate d according to

the period (e.g. a year) in which the cash flow Ci occur, as follows:

...
111

3
3

2
21 +⎟

⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
=

d
C

d
C

d
CPV

 The contribution of each cash flow Ci to the Present Value (PV) of the

investment is weighted by the compounded discount rate ()id+1 . Since the cash

flows are generally preceded by an initial investment IC, the Net Present

Value (NPV) adds this to the cash flow as negative value:

NPV = -IC + PV (Equation 45)

 Over the years, DCF has become a synonymous of NPV. But in fact it is

important to keep the role of each separate: NPV represents the net totally of all

contributions to the value of an investment; DCF is a technique used in the

calculation of NPV.

 For the purpose of this dissertation, we are adopting the assumption in

which an investment in a product line is worthwhile if NPV is greater than

zero. In addition, we must rewrite Equation 45 to have it compatible with the

costs and benefits functions defined on the previous sections. First, we can use

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

82

the vision of Clements et al. (Clements et. al., 2005), which assigns to the

investment costs (IC) for a product line the sum of organizational costs and core

asset base establishment6. As a result, a new term is derived to express initial

investment of a product line P:

 () () ()PCPCPIC caborg += (Equation 46)

 Thus, we can assign for each cash flow Ci the values calculated for each

reuse scenario function in the InCoME viewpoints, with the period of interest

beginning in the start date SD, as follows:

• Domain Engineering Cash Flow: ()SDAB ,δ , for the core asset base

δA of a domainδ .

• Product Engineering Cash Flow: ()SDpB k , , for the product pk.

• Corporate Engineering Cash Flow: ()SDBP or ()SDBP
' , according to

the reuse scenario, to the entire product line.

The next step is to define a new version of equation 46 for a generic

viewpointν , where ν can be represented by any of the viewpoints of InCoME.

Let assume a cash flow function, denoted by ()SDBν , which returns the cost

savings or losses for a reuse scenario in the viewpoint ν with the period of

interest starting in SD, as follows:

() ()∑ +
+−=

Y

z=
zd)+(
zSDB

ICNPV
1 1

νν (Equation 47)

 where Y is the investment cycle measured in years and SD is the start

date of the investment.

Return on Investment (ROI). After the NPV definition, we can now

define a function to calculate the Return on Investment (ROI) achieved by

setting up a software product line and using it as basis for product evolution.

Despite the ROI is considered a measure for corporate level, each viewpoint can

calculate its own ROI values. Moreover, it implies in using all reuse scenarios

functions available to calculate the cash flow for present values. As cited in

Chapter 2 in Equation 1, the ROI can be expressed by the difference between

6 It reflects the proactive approach for a product line in which the entire core asset base is built up front.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

83

benefits and costs, divided by investment costs. Accordingly, the ROI equation

for a viewpoint ν can be expressed by the following function:

)IC
)NPV)ROI

(P
(ν=(ν (Equation 48)

 ROI values are expressed in a percentage from the investment costs and

for the same value of NPV; the investment is more valuable that IC is smaller.

Payback Value (PB). Despite the Favaro et al. (Favaro, 1998)

statement in which they emphasize that NPV is an essential approach to

analyzing the value of investments in reuse7, we are interested in evaluating

not only how much of effort can bring to economic terms, but we also are

interested in when the investment in a product line will be paid back to the

organization. The economic function that performs this analysis is known as

Payback Value. It meaning is easily intuitive, since it estimates the shortest

investment cycle that makes the NPV a positive value for an investment cycle Y,

i.e. the smallest integer value in Y which satisfies the following equation:

()∑ ≥
+

+−
Y

z=
zd)+(
zSDB

IC
1

0
1

ν (Equation 49)

4.4.4. Simulation Model
Despite the computed results presented by the model can indicate if an

investment is worthwhile, it remains unclear how sensitive the results are with

respect with to the predicted and chosen values of all input parameters. In

practice, the estimation of input variables can differ from the real values and the

ROI values for a given product line scenario may lead wrong expectations, or in

worst case, it may lead to wrong decisions concerning the investment (Muthig et

al., 2006).

 As cited in previously, it is possible to manage the uncertainty of input

parameters by applying a simulation model in order to compute a large number

of scenarios based on the random set of input values. One of techniques widely

used to perform this is the Monte Carlo simulation (Malvin et al., 1986),

(Trivedi, 2001).

7 In fact, Favaro et al. states that NPV is superior to the other economics approaches to evaluate reuse

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

84

In order to apply Monte Carlo simulation for InCoME, we follow the

approach described by Muthig et al. (Muthig et al., 2006), which defines a

sequence of three steps:

• Step 1. To identify all input variable for which the stakeholders cannot

provide accurate predictions8.

• Step 2. To map each uncertain variable identified in the previous step to

a suitable probability distribution. In this step, it is defined the range of

acceptable values for each variable and a function specifying how likely a

particular value will occur.

• Step 3. To generate random input numbers for uncertain variables based

on the selected probability distribution. In this step, the economic

functions defined on the investment analysis layer will calculate the NPV,

ROI and Payback values for each set of random input values.

Next, the computed investment analysis values are put together and a

frequency distribution is built, which highlights how likely it is to achieve the

targets for NPV, ROI and Payback values through product line engineering.

Uncertain Variables. According to Muthig et al. (Muthig et al., 2006),

there are a list of uncertain parameters related with a cost model for product

line engineering. This set of variables had its uncertainty studied using SIMPLE

(Clements et al., 2005) as cost model. We agree with the vision presented by this

work and we are assuming the same list for InCoME added with the frequency

reuse value for the assets that composes a domain and the number of estimated

products updates. They can be viewed at Table 4.2, where the column

Uncertain Variable describes the parameter and the column Viewpoint

Impacted presents the relationship with the InCoME scenarios.

Table 4.2 – Uncertain Variables and Viewpoints Impacted

Uncertain Variable Viewpoint
Impacted

Number of products derived from a product
line infrastructure

Product Engineering
and Corporate

8 In their work, Muthig et al. (Muthig, 2006) define explicitly the uncertain variables as the number of
products, the commonality level, the effort for reuse, the change rate of core assets and the evolution rate
in traditional (stand-alone) style.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

85

Engineering
Commonality level Domain Engineering
Additional effort for making software reusable Product Engineering
Change rate of core assets Corporate

Engineering
Evolution rate in traditional style Corporate

Engineering
Frequency of reuse Domain Engineering
Number of Product Updates Product Engineering

and Corporate
Engineering

Probability Distribution. Each variable identified as uncertain must

be mapped into a probabilistic distribution. For InCoME simulation model, are

used the normal and uniform distributions. Uniform distribution defines a

range from a minimal to maximal value within any value is equally likely. For

InCoME, the number of products, the frequency of reuse and number of

product updates values are adequate for this type of distribution. Normal

distribution defines a level that is below or above the average within defined

lower and upper boundaries. The remainder of the variables follows this

distribution.

Number of Trials. The confidence of the simulated results depends on

the number of trials that are executed. According to Muthig et al. (Muthig et al.,

2006), when using the uncertain parameters defined previously for a product

line cost model it demands at least 20000 execution rounds of the simulation.

The simulation model of InCoME was defined to use any number of trials, but

we agree with the assumption of Muthig et al. which defines a minimum

number of scenarios execution in order to improve the quality of the simulation

results.

4.5. Using the Model
In the literature, the use of a cost model for software reuse is intrinsically

related with a set of assumptions based on the type of reuse adopted by an

organization. For InCoME, we are assuming the organization at least has a

certain level of maturity in software development in order to achieve the main

objectives for a systematic reuse approach. It implies in establish a data

collection policy due the large number of parameters that will feed the model

and keep the tracking of these metrics for planning and management purposes.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

86

 Despite the use of InCoME in an industrial scale is limited to date, we are

coming up with a simple process to allow an organization to apply it when

analyzing investments in a product line. In Figure 4.3, the use of InCoME is

presented by an activity diagram, denoted using UML notation, through a

sequence of activities:

z Establishing an Organizational Scenario;

z Functions Adjustments;

z Model Revision;

z Cost Factors Estimation;

z Model Data Population;

z Benefits Analysis;

z Economic Analysis;

z Product Line Investment Evaluation

z Cost Configuration Establishment

Figure 4.3 – InCoME Activities
 In order to exemplify the use of the model, we are assuming the same

scenario of a product line described in (Böckle et al., 2004) and (Muthig et al.,

2006). In these works, an organization wants to estimate the return on

investment (ROI) for fifteen software products with a product line umbrella. All

the products have roughly the same size and complexity and reuse scenario in

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

87

this case must figure out the cost of setting up a software product line to replace

the fifteen existing products during one year of interest.

4.5.1. Establishing an Organizational Scenario
This first step gathers people in the organization to establish the organizational

vision that must be used as a guideline to the next steps in using the model. It

main objective is to find out the following set of information:

z The product lines of interest. In this point it must be described the

specific product lines that will be evaluated by InCoME. Despite the

model can be extended to support several product lines in this initial

instance it will be available to work with only one product line at once.

z The products that are currently involved or planned for the

future. At this point the organization must to define one important

factor of cost: the number of products that will be developed through a

product line approach.

z The Investment Factors. As cited previously in this chapter, InCoME

defines the investment cycle (Y) in years, the discount rate (d), and the

start date of analysis (SD). These factors are used in the investment

analysis and they must reflect the organizational strategy to invest in

assets and the amount of money that must be “returned” to the

organization when the investment occurs.

z Product Line scenarios description. At this point, managers must

describe the possible scenarios in which the product line will be

evaluated. Each scenario describes the main points of evaluation that can

be considered for an investment analysis. It is not necessary to define a

scenario throughout mathematical equations, because in the next step we

will make some functions adjustments.

z The relevant time horizon. It is important to estimate the duration of

the period when the product line is to be analyzed. Typically, at least one

year of product line engineering activities should be taken into account to

allow the calculation of significant values.

 To obtain this set of information an organization may have to prepare a

questionnaire and apply it internally, or it can use some techniques to find out

the business vision that encompasses an investment in a product line.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

88

Example. In order to start the evaluation of the economic aspects of the

product line, the hypothetical organization established the following set of

information:

• Number of products: fifteen (all with approximately the same size and

complexity).

• Investment cycle: 1 year.

• Discount rate: 10% a year.

• Scenario description: Setting up a product line to replace the fifteen

existing products during the investment cycle.

4.5.2. Functions Adjustments
To allow an effective accounting for cost savings when applying product line

engineering, the organization must have its reuse scenarios well defined. It

implies in performing some adjustments in the equations defined by InCoME.

As the same way as SIMPLE (Clements et al., 2005), InCoME allows the

decomposition of its costs and benefits function in other equations, according to

the needs of the organization. For example, if a financial manager wants to

explore more the economic analysis he or she could derive functions such as

Profitability Index or Internal Rate of Return (Favaro et al., 1998) from the

NPV, ROI and Payback equations defined previously.

 Other point to note is the fact that in the economic analysis the unit of

measurement rarely is expressed in persons-hour or function points. It is

possible to associated a monetary factor (e.g. average cost for one unit of

persons-month per function point) and presenting the information in a

language familiar to the stakeholder.

Example. In this point, we only have to review our reuse scenarios, since cost

and economic functions are the same for this hypothetical scenario. The second

reuse scenario for corporate viewpoint is suitable for the needs of the

organization with t=1 year.

4.5.3. Model Revision
One important aspect of InCoME is the possibility to use it in different areas

within an organization, according to the roles played for each stakeholder

involved in the product line evaluation.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

89

 In this step, the entire model is presented to the stakeholders to make sure

that their concerns are addressed and that the constructed model will answer

the questions related with their respective viewpoints. In addition, the questions

formulated in section 4.2.1 in this chapter must be answered to confirm the

effectiveness of the model. If no, the model may have to be reformulated using

more finely grained or more sophisticated cost estimates which will result in

more precise or detailed data being collected and used to populate the formulas.

Example: Our hypothetical organization wants to establishes the economic

benefits from the corporate viewpoint. At this scenario, there is no need to

evaluate domain engineering and product engineering viewpoints, since the

decision will occur only in the corporate level.

4.5.4. Cost Factors Estimation
In this step, the stakeholders must work out all the data needed to feed the cost

functions of the model. For estimation purposes, the data gathered from the

cost of building past products, domain engineering activities, product

engineering activities, as well the measurement of the organizational cost, must

be provided as input to the formulas. One point to note here is the maturity of

an organization in estimates the low granularity factors, such as the cost to

develop an asset by common and unique parts development. For its

effectiveness, all cost factors must be fulfilled at the end of this step.

 One alternative to provide this level of information is the use of

benchmarks available in the case studies of the cost models definition. In the

literature, there are a large set of assumptions (Mili et al., 2001) (Böckle et al.,

2004), (Peterson, 2004) (Clements et al., 2005) for cost factors, such as values

for Ccabu, Cevo and Creuse. Thus, traditional approach for software size estimation

can be used for this step, such as COCOMO, Function Point Analysis or Use

Case Points Analysis (Albrecht, 1979), (Karner, 1993), (Boehm et. al., 1995).

Example: At this point we are assuming that the organization gathered the

cost estimations through its historical data and it had estimated some other

factors. Since we are using the same scenarios from (Böckle et al., 2004) and

(Muthig et al. 2006), Table 4.3 presents the cost factors for this hypothetical

organization.

Table 4.3 – Cost Factors from the Example

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

90

Cost Factor Value

Cprod – Cost of building one product 12 Persons-Year
Ccab – Cost of the core asset base 13 Persons-Year
Fcab – Fraction of the core asset base that
changes with each new version of the
product line

10%

Creuse – Cost of using the core assets to build
a product

0,84 Persons-Year

Cunique – Cost to build the unique parts of a
product

0,72 Persons-Year

Corg – Cost of changing the organization to
adopt product line engineering

2,4 Persons-Year

Cevo – Cost of evolving one product the old
way

2,4 Persons-Year

Cpl_evo – Cost of evolving the product line
through one evolution

24,7 Persons-Year

4.5.5. Model Population
In (Mili et al., 1999), Mili et al. define an archival function in order to store

the data used for viewpoints analysis. In this sense, InCoME has the same

approach for the data that has been gathered and inserted into the viewpoint

formulas. The stakeholders can customize spreadsheets in order to record,

update and track cost information on all four investment cycles.

4.5.6. Benefits Analysis
In this step, all cost savings are calculated and presented for each viewpoint,

according to the reuse scenario defined for it. The stakeholders can view at this

moment the amount of effort (or a monetary amount of that effort) saved or lost

when applying a product line engineering approach.

Example: Using the functions defined for each viewpoint we can extract a set

of information from the model computation. According the scenarios defined to

the hypothetical organization, the Figure 4.4 presents the results of the cost

estimations.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

91

Figure 4.4 – Cost Estimations (Böckle et al., 2004)
 Using Equation 44 of InCoME, we can now establish the benefits analysis

for the corporate viewpoint scenario. That function expresses the cost savings

for evolving n products in a traditional style (i.e., with no adoption of a product

line) compared with the cost to evolve the same set of assets through a product

line. In our hypothetical organization, the number of products (n) is fifteen, the

investment cycle (t) is two years, and the percentage of updates of the unique

parts (Funique) is 6%. This configuration generated a loss of -2,8 Persons-Year for

the first generation of the product line. Since for the following generations of the

product line the organizational cost and the core asset base cost were already

incurred, it produces a cost savings of 11.3 Persons-Year for each update of the

product line.

4.5.7. Economic Analysis
Based on the cost savings or losses, an organization in this step can perform an

economic analysis for the investment cycle defined previously. The results of

this analysis are the Net Present Value, Return on Investment, and

Payback Value for each viewpoint, according to the costs and benefits

propagated for one cycle to the next.

 According to the step 4.5.2, other appropriate economic functions could

be able to run the data gathered across the engineering cycles.

Example: In our hypothetical organization the managers want to know the

return on the investment (ROI) for the adoption of a product line with fifteen

products during an entire year. To achieve this analysis we are assuming that

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

92

the products will have four update during a year (i.e., nr =4, according InCoME

definition in Equation 44). We are interested in calculated the ROI using

Equations 47 and 48. According the cash flows generated by each update, in the

third generation of the product line the ROI can be estimated in 128%.

4.5.8. Product Line Investment Evaluation
This step addresses the evaluation if an investment in a product line is valuable,

according to the values calculated in the economic analysis step. If the values

expressed are not achieving the targets defined by the organization, an

additional step can be performed in order to simulate ROI, NPV and Payback

for a random range of cost factors. This step is performed by the elements

defined for the simulation model, as presented previously. If it is necessary, a

formal study must be made to identify the dependencies among the cost factors

that may have some influence in the simulation. In fact, the use of simulation

techniques, such as Monte Carlo simulation, can be used as a complement or an

extension of the model (Muthig et al., 2006).

Example: According the Monte Carlo simulation method9, we can estimate the

risk to invest in that product line, considering a discount rate of 10% a year.

Using the technique with the input parameters gathered from our hypothetical

organization we can estimate in 77,3% the probability of ROI>100%. It implies

in consider more than 20% of risk in losing money when investing in that

product line. In another round of simulation we increase the maximum number

of products to develop with more five products (i.e. 2015 ≤≤ n). The probability

grows to the level of 78,6% of ROI>100%. Our last attempt to decrease the risk

level is to decrease the number of annual updates, e.g. it can have up to two

updates a year. With this configuration, the probability of ROI>100% is 92,3%.

Similarly, there are a large set of combinations of the input parameters that can

affect the result of the simulation. All the estimations were made through the

execution of 20.000 instances of the model in a spreadsheet.

4.5.9. Cost Configuration Establishment
The final step in using InCoME is the establishment of a Cost Configuration

(Nóbrega et al., 2006). It implies in using the estimates and economic analysis

for all viewpoints as a historical data for future projects. According to the

9 The definition and use of Monte Carlo simulation can be viewed in Appendix A

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

93

SIMPLE principles, which we used as guideline for InCoME and organization

must keep its configuration of cost as simple and reliable as possible. As a

consequence, the decision-making activities regarding the adoption of a product

line approach (or its expansion for all products that can be developed) can be

planned using that configuration.

 The cost configuration for an organization must be flexible to allow its

extension to other cost models different from InCoME for comparison purposes.

In this sense, an organization can adopt the most suitable model that fits its

needs or make adjustments in an existing one to reflect its reuse scenarios

(Nóbrega et al., 2006).

Example: For the hypothetical organization it is recommended to establish a

product line with number of product varying from fifteen to twenty products

and with the maximum of two annual updates for each product. According the

simulation values, this cost configuration has a low risk when considering the

investment in that product line.

4.6. Chapter Summary
This Chapter presented the definition of the Integrated Cost Model for Product

Line Engineering (InCoME), its objectives, foundations and elements. In

addition, we proposed a process to apply InCoME when evaluating the adoption

of a product line engineering approach.

 The model was defined taking as basis the fundamentals of the Integrated

Cost Model for Software Reuse (Mili et al., 2001) and SIMPLE (Clements et al.,

2005). It defines a set of cost and benefits functions for a set of viewpoints, a

vision of costs saving related to a specific set of stakeholders. It also addresses

the economic analysis of viewpoints through the calculation of the Net Present

Value, Return on Investment and Payback value. The results of the later is then

evaluated according to the organization main objectives in which is based on a

set of organizational cost factors

 Table 4.3 presents a summary of all equations defined for InCoME with a

brief description of them. Table 4.4 highlights the set of features from InCoME

compared with the product line cost models studied in Chapter 3.

 Upon the InCoME definition, the next chapter will present a case study in

applying InCoME for product line adoption investment evaluation.

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

94

Table 4.4 – InCoME Equations

Description Equation

Demand Function - returns the
size per time unit necessary to
develop the set of assets kA for a
product kP

() () ()
p

kk
k T

CMUM
AD

+
=

The cost to build a core asset Ai () () () ()iiii AINSACERTADAC ++=

Cost to develop a core asset
base to a particular scope
within a domain

() () ()∑
∈∀

+=
δ

δ
AA

icab
i

ACδDAC

Cost to develop the unique
parts of a product that are not
based on assets in the core base
asset

() ()kkunique UDpC =

Cost of building n products
independently ()∑

=

=
n

k
kprodind pCC

1

Benefit Function for Domain
Engineering Viewpoint

() () ()∑ −=∈∀ tCtABtABAA cabii ,,,, δδδ

Benefit Function for Product
Engineering Viewpoint

() ()−= t,pCtpB kprodk ,

() () ()[]tpCtACtpC kkcabkorg ,,, ++

First Benefit Function for
Corporate Engineering
Viewpoint

() ()−= ∑ t,pCtB k

n

=k
prodP

1

() () () ()()⎥
⎦

⎤
⎢
⎣

⎡ ∑
n

=k
kreusekuniquecaborg t,PC+t,PC+tC+tC

1

Second Benefit Function for
Corporate Engineering
Viewpoint

() ()−= ∑ t,pCtB k

n

=k
evoP

1

'

() () ()()⎥
⎦

⎤
⎢
⎣

⎡
∗∑

n

=k
kreusekuniquekcabu t,pC+t,pt,pC

1
unique CF+

Net Present Value for a
Viewpoint ν () ()∑ +

+−=
Y

z=
zd)+(
zSDB

ICNPV
1 1

νν

Return on Investment for a
Viewpoint ν)IC

)NPV)ROI
(P

(ν=(ν

Payback (the smallest integer
value in Y which satisfies the
following equation)

()∑ ≥
+

+−
Y

z=
zd)+(
zSDB

IC
1

0
1

ν

Table 4.5 – A Summary of Features of PL Cost Models (with InCoME)

Cost
Model

Features

 Cost
Function

Benefit
Function

Predefined
Reuse

Viewpoint

Pluggable
Function

Investment
Analysis

Decision
Analysis

Chapter 4 – InCoME: Integrated Cost Model for Product Line Engineering

95

Scenarios Model
Poulin X X - - - - -
ABC X X - - - - -
Convergys X X X - - X -
SIMPLE X X X - X - -
COPLIMO X X - - - - -
SoCoEMo-
PLE

X X - X - X -

qCOPLIMO X X - - - - -
Tomer X X X - - - -
Schmid X X - - - X X
InCoME X X X X X X (*)

(*) The model defines a Simulation Model instead a Decision Analysis Model.

Case Study

Once InCoME has been described, some experiments must be performed in

order to evaluate if the model achieves its proposed objectives. In this chapter, it

is presented a case study to evaluate the effectiveness of the model through the

application of InCoME in a real software development project of an organization

that is studying the adoption of product line engineering. In the context of this

case study effectiveness can be translated as accuracy, which means as

closeness to reality.

In the literature, the definition of a reuse cost model is intrinsically linked

with its formal validation in order to gain confidence for its application in a

generic scenario (Wiles, 1999).

In this sense, a case study was performed to analyze if InCoME can

effectively help an organization in their decision-making tasks when evaluating

if an investment in a product line is worthwhile. For this case study, the model

proposed by Wohlin et al. (Wohlin et al., 2000) was used as a guideline to the

evaluation activities due to its approach provides a necessary formalism to this

case study.

This chapter highlights the context where InCoME was applied, the

presentation of the techniques used in this study, the evaluation itself and a

discussion concerning the lessons learned in this study.

5.1. InCoME Context
The selected organization to perform the case study is currently the largest

governmental information technology provider in Latin America, with its

headquarters located in Brasília (DF). This organization has a five years contract

to develop a family of products to the Brazilian federal bureau responsible to the

5

Chapter 5 – Case Study

97

public security operation for federal government. The scope of the information

systems developed by the organization to its customer is related to the

management of the new Brazilian passport and the control of immigration in

airports, sea and fluvial ports and other border control offices. The major part of

the effort to develop the family of products has been done in Recife (PE), where

a group of fifty persons (including software engineers, test engineers, project

managers, etc.) are involved since 2005.

 During the period of the contract, the organization was demanded to

increase the productivity of its development teams in order to deliver new

products defined by the costumer, with no overrun in the hired costs, within

established schedules agreed by both parts. In 2007, the organization

established an internal program to achieve those productivity targets by the

creation of a technical division. One of the initiatives proposed by this division is

the adoption of a reuse program that will be integrated with the software

development process adopted by the organization. This program focuses on the

definition of a reuse process, including methods, tools and people education.

Considering the possibility of adopting product line engineering in the context

of the reuse program proposed for the organization, InCoME was applied to

evaluate if this approach is economically viable.

 Although the fact that there is no a product line formally defined for the

customer projects, all products were built from a common set of assets that

reflects the domain of passport management. In this sense, InCoME was

used to perform an economic analysis for the following scenarios:

 The organization has a set of existing stand-alone products undergoing

periodic evolutionary updates. Its managers wish to know which scenario has

the biggest ROI value: (i) converting the products into a product line and

continuing their evolution in that form or (ii) continue to evolve them

separately.

5.2. Evaluation Techniques
For the purposes of this case study, the approach proposed by Wohlin et al.

(Wohlin et al., 2000) brings a set of activities to evaluate InCoME:

Chapter 5 – Case Study

98

• Definition. This step addresses the experiment definition in terms of its

problem, objective and goals.

• Planning. In this step, the model presents three main concerns: the

design of the experiment, the definition of the instrumentation and the

identification of the possible threats.

• Operation. In this activity, there are two main sub-activities: the

analysis and the interpretation. In this step, all experiment

measurements are collected according to the planned activities.

• Presentation/Package. These steps represent the activities for

presenting and packaging the set of results generated after the analysis

and interpretation activities.

The approach described by Barros (Barros, 2001) for using Wohlin et al.

model had also influenced the process to evaluate InCoME.

5.3. InCoME Evaluation
As stated in Chapter 4, the main objective of InCoME is helping an organization

in its decision-making tasks when evaluating the investments in a product line

from an economic point of view.

 Due to the constraints related with time schedule, which can span across

months, this evaluation was made in a time frame of two months, starting in

November 2007 and finishing in December 2007. The next sections describe the

work performed in these two months in order to evaluate InCoME in a formal

way.

5.3.1. Definition
To define the experiment we used the Goal-Question-Metric approach

(GQM) (Basili et al., 1994). According to Basili et al., the GQM is based upon

the assumption that for an organization to measure in a purposeful way it must

first specify the goals itself and its projects. Next, the organization has to trace

these goals and provide a framework to interpret the data collected. Basili et al.

resumes the GQM in three levels of measurement:

• Conceptual Level. Named as Goal, this level addresses the objects of

measurement and its reasons with respect to various models of quality,

according to various points of view.

Chapter 5 – Case Study

99

• Operational Level. Named as Question, this level reflects the

questions that characterize the achievement of a specific goal.

• Quantitative Level. Denoted by Metric, it expresses the set of data

associated with every question in order to answer it in a quantitative way.

In the next sections, the definition of InCoME experiment in terms of its

goals, questions and metrics is presented.

5.3.1.1. Goal

G1. To analyze the InCoME for the purpose of validating it with respect to the

accuracy of the model from the point of view of financial managers and project

managers in the context of product line engineering.

5.3.1.2. Questions

Q1. How accurate is the model estimations, given accurate input parameter

values?

Q2. Can the model indicate accurately the direction of an investment in a

product line, according to its reuse potential?

5.3.1.3. Metrics

M1. Accuracy Variation. According to Bandinelli et al. (Bandinelli et al., 1996),

the accuracy of the results of a reuse economic model are directly related to the

quality of the data that is fed into the model. Availability of reliable data is a

necessary condition to apply an economic model. The only way to know whether

a model is correct is to start using it, validate it against real data and tune it to

the organization specific characteristics. As a result, the accuracy of the model is

dependent from the accuracy of its input parameters.

 According to Clements et al. (Clements et. al., 2005), the input

parameters gathered from organization historical data are the simplest and the

most reliable source of effort. We assume here that these parameters can be

considered accurate enough to provide good estimations. On the other hand, if

such parameters are available only by expert judgment or market benchmarks,

they can carry out a possible lack of accuracy due the fact that future products

are possibly dissimilar to past products. In this sense, we defined an indicator

for Q1, Accuracy Variation (∆A), that is the sum of the number of input

parameters gathered by historical data (Ph) less the sum of parameters gathered

Chapter 5 – Case Study

100

by other less-than-accurate sources (Pl), all divided by the number n of

parameters, as follows:

n
PP

A lh ∑∑ −
=Δ (Equation 50)

 The parameters that have its accuracy measured are restricted by the cost

factors defined in Chapter 4: Corg, Ccab, Cunique, Creuse, Cevo, Cprod and Ccabu. A

positive value of ∆A indicates the model estimations has some level of accuracy

(the opposite means the estimations is less accurate). As ∆A increases during

the evaluation, the accuracy of the model values increases in the same

proportion.

M2. Homogeneity Degree. In order to answer Q2, we first based our

investigation in the work performed by Muthig et al. which indicates that the

return on investment in a product line is associated with the number of

products released in a specific period and the degree of reuse applied in its

implementation (Muthig et al., 2006)10. In addition, Clements et al. (Clements

et. al., 2005) state that to evaluate the capacity of a product line in generate a

specific number of products, it is necessary to calculate its homogeneity degree.

This metric measures how homogeneous the set of products are, and it is based

on the set of requirements that apply for each product. It indicates the “reuse

potential” for a product line by analyzing the percentage of unique requirements

that satisfy a family of products. The values obtained with this metric are in the

range of zero and one, with values near zero indicating a low reuse potential and

values near one indicating a high reuse level. This metric are measured by the

expression (100%-Fcommonality) which assigns the value of 70% of commonality

for all products (Muthig et. al., 2006). In this sense, to answer Q2 we defined

an indicator that measures the correlation between the NPV estimated for a

product line and its degree of homogeneity. The metric, denoted r, is presented

below:

hr

rh

SS
S

r = (Equation 51)

10 There is a rule of thumb that defines in three the number of product releases that can be
considered for a product line payback.

Chapter 5 – Case Study

101

 where Sr is the standard deviation for NPV measures, Sh the standard

deviation for homogeneity degree measures and Srh is defined by the equation

1
1

−

−⎟
⎠

⎞
⎜
⎝

⎛

=
∑

=

n

hrnhr
S

n

i
ii

rh (Equation 52)

where r is the mean of NPV measures h is the mean of homogeneity degree

measures and n the number of measures. The r value is always in the range of -1

and 1 and a null value indicates that there is no correlation between NPV and

homogeneity degree. A positive value implies that there is an association among

the two measures in the same proportion. Negative values indicate that there is

a correlation between them in an inverse proportion. There is a classification of

the linear correlation where values greater or equal 0.90 are considered

“strongly correlated”.

5.3.2. Planning
After the definition of the experiment, a planning for its conduction is

necessary. Here it is defined the context of the experiment, the subjects

associated with it, the training activities, a pilot project, its instrumentation, the

experiment criteria, null and alternative hypothesis, dependent and

independent variables, the qualitative analysis, an internal and external validity,

and a construction and conclusion validity.

5.3.2.1. Context

The objective of this study is the validation of the accuracy of InCoME based on

a real reuse scenario within an organization. The project where this scenario

occurred has been developed since 2005 and it was conducted in organization

office located on Recife by a team with more than fifty engineers.

5.3.2.2. Subjects

The staff of managers involved with the project, playing the roles of financial or

project manager, represents the subjects of the study. The first role is

responsible to approve an investment for a hired project, and the later is

responsible to entry the data for the model. Additionally, a subject representing

a quality engineer plays a role that is responsible to collect the organization

historical data. Eventually, a manager can plays the roles related with both

financial and project management activities. The effort estimation and the

Chapter 5 – Case Study

102

model input parameters entry were performed by one project manager that fed

the financial staff with the data gathered with the study.

5.3.2.3. Training

The training of the subjects was divided in two phases. In the first phase it was

performed a study on the financial formulas available in Microsoft Excel11

spreadsheet in order to develop the tool to represent the model. This activity

took eight hours and it was performed by one subject representing the project

manager staff. The second phase started when the spreadsheet was already

developed and it included the data population with a product line scenario

defined by Böckle et al. (Böckle et al, 2004) with a set of random values. This

phase took two days or sixteen hours and it also was performed by the same

subject of the previous training phase.

5.3.2.4. Pilot Project

The experiment itself was considered a pilot for the purpose of measuring the

economic viability to adopt a product line. Due to the time constraints of the

project a formal pilot project was not performed. The information needed for

the experiment operation was gathered from the organization historical data

and the estimation for a specific group of cost factors.

5.3.2.5. Instrumentation

The subjects received a spreadsheet with all cost factors equations defined for

the scenarios defined by the model.

5.3.2.6. Criteria

The study focuses in evaluating the accuracy of the model. In this sense, the

criteria demanded must be evaluated quantitatively through the effort necessary

to convert the products into a product line (and continuing its evolution in that

form) and the effort to build the same set of products in a stand-alone fashion.

Moreover, the accuracy variation and homogeneity degree correlation will be

evaluated qualitatively in order to answer Q1 and Q2.

5.3.2.7. Null Hypothesis

This hypothesis is that the experimenter wants to reject with a high significance

as possible. In this study, the null hypothesis express that InCoME has no

11 http://office.microsoft.com/excel

Chapter 5 – Case Study

103

accuracy for its use in an organization and the economic analysis performed

cannot indicate accurately if an investment in a product line is worthwhile.

Thus, according to the criteria defined in previous section, the null hypotheses

for this experiment are:

 '
0H : µ∆A < 0

 ''
0H : µr > 0.9 and the investment is not indicated

5.3.2.8. Alternative Hypothesis

This is the hypothesis in favor of which the null hypothesis is rejected. In this

study, the alternative hypothesis reflects is accurate and it can indicate if an

investment is worthwhile. The set of alternative hypothesis is:

 1H : µ∆A >=0

 2H : µr > 0.9 and the investment is indicated

5.3.2.9. Independent Variables

These variables will be manipulated and controlled along the study. For this

study they are the model itself, the number of products derived, the

commonality level among the products, the additional effort for making

software reusable, the change rate of core assets, and the evolution rate in

stand-alone development.

5.3.2.10. Dependent Variables

In this experiment the objects of the study is the dependent variables. They are

the ROI value for the reuse scenario, the product line homogeneity degree, and

the cost factor accuracy. ROI will be measured by the Net Present Value for the

viewpoints divided by the investment costs for the reuse scenario. Product line

homogeneity will be measured by the products requirements commonality

(Clements et. al., 2005), and the accuracy for each cost factor will be measured

through its identification as an organization historical value.

5.3.2.11. Qualitative Analysis

This step has the intention to evaluate the accuracy of the model in providing an

investment analysis for a product line. This analysis will be performed through

the spreadsheet with the costs and benefits functions. After the input of all cost

parameters the spreadsheet will indicate if the estimation can be considered

accurate enough to support the investment analysis.

Chapter 5 – Case Study

104

5.3.2.12. Internal Validity

According to Wohlin et al. (Wohlin et al., 2000), the internal validity of the

study is the capability to repeat its behavior into a new study. For this study, the

internal validity is strongly dependent of the number of products derived from a

product line infrastructure. According to Muthig et al. (Muthig et al., 2006) at

least three products must be built (or planned to be built) in order to evaluate

accurately the investments in a product line and this guideline was followed in

this study.

5.3.2.13. External Validity

This step aims to measure the capability of the study to be affected by

generalization. It implies in considering the capability to repeat the same study

in other research groups (Wohlin et al., 2000). For this study, its external

validity can be considered sufficient, since it aims to evaluate the accuracy of the

model in a large organization through a big development project. Additional

studies can be planned with the same profiles of subjects and reuse approach.

5.3.2.14. Construct Validity

This validation aims to measure the relation between the theories that is to be

proved and the instruments and subjects of the study (Wohlin et al., 2000). In

this study, a well-known domain and the legacy resultant of its implementation

was chosen. In addition, the estimation values have a meaningful use in real

investment analysis activities.

5.3.2.15. Conclusion Validity

This validation determines the capability of the study to generate conclusions

(Wohlin et al., 2000). The conclusion of the study will be described by the use of

descriptive statistic.

5.3.3. Project Description
The project used in the study was performed to build nine products related with

the domain of passport management. As a basis for product development, a

framework previously built in Java platform was available to derive the new

products. The first product attempts to create an integration platform between

the passport management system and an Automated Fingerprint Identification

System (AFIS), and it was developed by a five persons team. The second product

Chapter 5 – Case Study

105

is an attendance control system to be used integrated with the main passport

system, and seven persons compose the development team. The third product is

a new version of a workflow management system, responsible to keep track of

all passport emission tasks and a six person team developed it. Six additional

products were constructed based on the same base and they completed the

family of domain products. All of these products were based on an internal

framework, which contains the reusable assets, including the source-code,

requirements, user interface templates, architecture, test plans and other shared

artifacts. Table 5.1 presents the summary of the project numbers.

Table 5.1 – Project Numbers

Experiment Data Value

Days (01/11/2007 - 21/12/2007) 51

Number of Participants 2

Products Assessed 9

Set of Core Asset Base 10

Number of Reuse Scenarios 2

Total Development Effort (Stand-Alone) 29.610 Persons-Hour

Core Asset Base Development Effort 4.986 Persons-Hour

Domain Analysis Effort 476 Persons-Hour

Organizational Cost 3.256 Persons-Hour

Product Evolution Effort (annual mean) 900 Persons-Hour

Core Asset Evolution Level (annual mean) 10% of Core Asset Base

5.3.4. Instrumentation
5.3.4.1. Selection of the Subjects

The subjects selected to the study were composed by one project manager,

responsible to the project activities for each product and a senior manager,

which plays the role of the financial manager. The group of subjects was selected

by convenience sampling (Wohlin et al., 2000), representing the nearest and

most convenient people related with the experiment.

5.3.4.2. Data Validation

Chapter 5 – Case Study

106

The data used in this study was validated by descriptive statistics that provide

simple summaries about the sample and the measures. It is used to present

quantitative descriptions in a manageable form in order to help the analysis of a

large amount of data in a sensible way.

5.3.4.3. Instrumentation

Before the beginning of the experiment, all instruments must be ready for use,

including the cost factors spreadsheet.

5.3.5. Operation
5.3.5.1. Experimental Environment

The case study was conducted during November-December 2007, at the

organization office in Recife. It was performed by the project manager allocated

for each product and by the senior manager. The quality team indirectly

supported the data collection task.

5.3.5.2. Training

The training concerning Excel economic formulas and the spreadsheet tool took

twenty-four hours in the beginning of November 2007.

5.3.5.3. Costs

The subjects involved in the study were hired by the organization and according

to the activities cited in the planning phase they spent two months in general,

including the instrumentation preparation, the training activities, the operation

as well as the analysis tasks.

5.3.6. Analysis and Interpretation
5.3.6.1. Training Analysis

The subjects involved in the study were trained in order to evaluate the results

of the experiment. The training to analyze the data gathered was performed in

four hours and it consisted of the study of statistical functions (e.g. linear

correlation) and Monte Carlo simulation with the intention to use the

spreadsheet with the model definition.

5.3.6.2. Quantitative Analysis

The analysis had compared two distinct scenarios for a product line composed

by nine different products. The first scenario (SC1) addresses the situation

where the organization develops the nine products in a traditional style, i.e. out

Chapter 5 – Case Study

107

of the umbrella of a product line, and continues evolving them in this way. The

second scenario (SC2) reflects the situation where the organization wishes to

convert all products using product line engineering approach and continue to

evolve them in that form.

 Each product has some similar features, including the JEE platform12,

the passport management domain, among other non-functional requirements.

The engineers allocated for each product development have a good experience

in the development platform and environment and they are considered as a

group of experienced software engineers. All the development teams have a

good experience in using a systematic process to develop software, since the

organization was CMMI Level 3 certified13.

 For each scenario, the subject that played the role of a project manager

retrieves the effort estimations and fulfills the spreadsheet with the data. Next,

for the second scenario, he performed the domain analysis in order to establish

the core asset base for all products development. The variability of each product

was analyzed and the unique parts were identified and its effort fulfilled in the

spreadsheet. Moreover, for both scenarios the data related with organizational

costs, core asset base development, reuse level, product and assets evolution,

was estimated or retrieved according to its availability as historical data. The

Table 5.1 presents a summary of the effort and the estimated number of updates

for each product. The effort to develop the products is measured in persons-

hour.

Table 5.2 – Products, Effort and Number of Annual Updates

Product Effort #Annual Updates

P1 5346 PH 8

P2 3276 PH 4

P3 3096 PH 2

P4 5094 PH 8

P5 2700 PH 2

P6 2070 PH 4

P7 3060 PH 2

12 http://sun.java.com
13 http://www.sei.cmu.edu/cmmi/

Chapter 5 – Case Study

108

P8 3492 PH 4

P9 1476 PH 4

 In Table 5.2 is presented the remaining relevant cost factors to all

products over a product line engineering approach. Again, the effort unit is

expressed in persons-hour.

Table 5.3 – Products Cost Parameters

Product Unique Parts
Effort

Reuse Level Product
Evolution

Effort
(Annual)14

P1 1134 PH 144 PH 900 PH
P2 1260 PH 112 PH 900 PH
P3 1116 PH 96 PH 900 PH
P4 486 PH 144 PH 900 PH
P5 882 PH 96 PH 900 PH
P6 828 PH 48 PH 900 PH
P7 288 PH 112 PH 900 PH
P8 576 PH 96 PH 900 PH
P9 234 PH 48 PH 900 PH

 The Core Asset Base cost values are presented in Table 5.3 and the

domain analysis effort is described in Table 5.4. For each asset it was assigned a

constant effort to certify it and insert it into a repository. This cost was

estimated in 8 Person-Hour for each factor.

Table 5.4 – Core Asset Base Cost Parameters

Core Asset Effort Frequency of

Reuse

Asset Evolution

Effort

(Annual)15

A1 594 PH 8 59,4 PH

A2 360 PH 3 36,0 PH

A3 954 PH 5 95,4 PH

A4 648 PH 9 64,8 PH

14 Due to a lack of reliable data, the effort necessary to evolve the products in a traditional style was
normalized according the historical average of products evolution
15 For the same reason, the effort to evolve the core asset base is normalized as a rate of 10% of each
asset. In (Böckle et. al., 2004) the same fraction is used and it was considered as a reasonable value.

Chapter 5 – Case Study

109

A5 540 PH 5 54,0 PH

A6 198 PH 1 19,8 PH

A7 180 PH 3 18,0 PH

A8 360 PH 3 36,0 PH

A9 738 PH 6 73,8 PH

A10 414 PH 2 41,4 PH

Table 5.5 – Domain Analysis Cost Parameters

Cost Factor Effort

Commonality and Variability 160 PH

Product Line Scope Definition 96 PH

Generic Architecture Design 160 PH

Development Environment 40 PH

Testing Architecture Definition 40 PH

Other Development Artifacts 80 PH

 Finally, the Table 5.5 presents the effort to change the organization in

order to support the adoption of a product line.

Table 5.6 – Organizational Cost Parameters

Cost Factor Effort

Internal Reorganization 640 PH
Process Improvement 320 PH

Training 400 PH
Repository Purchase and

Installation
1800 PH

Product Line Operational Costs 96 PH

 Using descriptive statistic, the data collected in the case study were

grouped in three different perspectives: the Viewpoints Analysis, the

Investment Analysis and the Simulation Analysis.

5.3.6.3. Viewpoint Analysis

The Viewpoint analysis was performed by the execution of the model through

the spreadsheet calculations. The data obtained for the estimation was

separated into two distinct groups: data gathered from historical data and data

Chapter 5 – Case Study

110

gathered from expert judgment. In the first group we found the products effort,

product evolution effort, the most of organizational effort factors, and the

unique parts. The second group includes the reuse level, the core asset base

effort and the asset evolution effort. This distribution implies in an accuracy

variation (∆A) of 14,2%. This measure rejects the null hypothesis '
0H : µ∆A < 0,

which confirms the alternative hypothesis 1H : µ∆A > 0. Despite the value can be

considered low to the organization purposes, it can grow if the factors related

with core asset base cost can be retrieved in future project from the organization

historical database. Since the organization does have not a domain analysis

processes instantiated these group of factors can only be estimated by expert

judgment.

 The data collected from the model computation indicates that the

Domain Engineering activities have a positive balance in its benefits when

compared to the costs of building the assets. Figure 5.1 presents the values

collected from the benefits and cost equations. The final balance is 20534

Persons-Hour of effort savings.

Figure 5.1 – Domain Engineering Viewpoint Balance

 The Product Engineering Viewpoint was analyzed by the estimation of

the cost savings or losses for each product defined previously within the two

reuse scenarios. In general SC1 presents the best results considering that 77% of

products produce cost savings when comparing the traditional development

Chapter 5 – Case Study

111

approach and the product line engineering approach. In SC2 all products

produces negative balances which implies in a higher cost to produce the first

generation of products for a product line. Figure 5.2 presents the balance for the

first generation of a product line for SC1 and SC2. Despite this negative

scenario, SC2 cannot be completely discarded due to the evolution of the

products along a specific time period. When we consider all subsequent releases

for a period of a year the scenario balance became positive. This is explained

due to the fact that organizational costs and core asset base cost were already

incurred and the most significant factor for cost savings is the reuse level

associated with the core asset base evolution effort. Figure 5.3 presents the

balance for subsequent generations of a product line during a year.

Figure 5.2 – PL First Generation Balance

Chapter 5 – Case Study

112

Figure 5.3 – PL Subsequent Generations Balance (within one year)
 The last viewpoint analyzed was the Corporate Engineering which

presents a balance as the sum of all products, considering SC1 and SC2. The cost

savings for this viewpoint can be analyzed using the same assumptions of the

individual products. The cost savings to build a product line from scratch

instead converting it are impressive for the first generation of products. The

subsequent generation presents positive values for both scenarios, but the

upfront costs are strongly favorable to SC1. Figure 5.4 shows the balance for

Corporate Engineering Viewpoint.

Figure 5.4 – Corporate Engineering Balance

Chapter 5 – Case Study

113

 Conclusion: The experiment indicates that the SC1 saves more effort than

SC2. If we consider that SC1 is a situation associated with the proactive

approach for product lines (Clements et. al, 2002) where the core asset base is

entirely built from scratch, the scenario is compatible with the study of

Clements (Clements, 2002) which states that this strategy can predict well the

costs for future developments. On the other hand, SC2 stands for the extractive

approach (Clements, 2002) which can help in the transition from conventional

to software product line engineering, but with a higher cost than the other

strategy.

5.3.6.4. Investment Analysis

After execution of the experiment for all viewpoints, the set of results had fed

the economic functions in the spreadsheet in order to perform the analysis from

an economic point of view. According to the data obtained from the previous

section, seven of nine products of SC1 presented positive cost savings, which is

an indicator that they can be considered to develop. But when we consider an

economic analysis for the present values gathered from products benefits, we

can have another direction of decision.

 In this step of the experiment it was calculated the values of three

economic functions for each viewpoint: Net Present Value (NPV), Return on

Investment (ROI) and Payback Value (PB). It was taken into account a period of

five years of investment analysis over a discount rate of 10% a year. The results

indicated that in a long term P6 and P9 can get the money invested back, in

opposition to vision established in the viewpoints analysis. It can be explained

by the high cost savings achieved for subsequent versions of those products

(811, 80 PH and 990 PH, respectively). On the other hand, P3 and P5 had its

investment not recommend, since NPV is negative for the period analyzed.

Again, the behavior can be explained by the low values achieved for subsequent

versions (193,80 PH and 217,20 PH, respectively) which are not sufficient to

make this investment worthwhile16. For the same reason the investment in SC2

can be considered now for three products - P1, P4, and P9 - in opposition to the

16 It is important to remember that an investment is indicated only if the NPV is greater than zero.
Otherwise, it is recommended to invest in other type of assets.

Chapter 5 – Case Study

114

viewpoint analysis where for the first generation there was losses. The Figure

5.5 shows the values obtained after the NPV analysis.

Figure 5.5 – NPV for Product Engineering

 The investment analysis for the Domain Engineering Viewpoint demands

a strong recommendation to invest on it, since its NPV had indicated a

payback in only three months, which can be justified by the higher frequency

of reuse of the core asset base.

 Next, it was collected the results of the Return on Investment (ROI)

function, which presented another set of interesting results. For SC1, the ROI

achieved indicated that despite seven of nine products has the investment

indication, only three of them have a ROI value greater than 100%17,

respectively P1, P4 and P9. Through the ROI analysis SC2 has a worse

evaluation than the NPV analysis due only one product (P4) has been presenting

a ROI greater than 100%. Figure 5.6 presents a summary of the ROI estimations

for Product Engineering Viewpoint, with the green line indicating the desired

level of the measure.

17 The ROI value indicates the totality of the investment that returns to the organization. In this sense,
values greater than 100% are a good indicator for an investment.

Chapter 5 – Case Study

115

Figure 5.6 – ROI for Product Engineering Viewpoint

 One point to note here is the behavior of the Payback value

measurements which indicates when the investment will return to the

organization. The Table 5.6 presents a summary with the payback values for SC1

within Product Engineering Viewpoint.

Table 5.7 – Payback Values for Product Engineering Viewpoint

Product Payback Value

P1 5 months

P2 2 years and 3 months

P3 4 years and 5 months

P4 4 months

P5 No Payback

P6 2 years and 8 months

P7 11 months

P8 9 months

P9 2 years and 4 months

Chapter 5 – Case Study

116

 One point to note is even some products presents negative values for NPV

and ROI less than 100%, there is a payback value associated with them. Only

one product (P5) has a payback outside the investment period (five years)18.

 Finally, for the Corporate Engineering Viewpoint, the investment analysis

was also performed using the sum of all products values. In this sense, the NPV

for all products of SC1 presented a positive value, indicating that the investment

is valuable. For SC2, the values are negative and the investment on it is not

recommended. At the same way, ROI for Corporate Engineering Viewpoint of

SC1 presented a value greater than 100% which implies in a good indicator to

invest in that scenario. The payback value for SC1 is estimated in 10 months.

 Conclusion: Despite the viewpoint analysis indicated interesting

relations for cost savings, the investment decision only can be made after the

economic analysis of all reuse scenarios. According to Favaro et al. (Favaro et.

al., 1998), the NPV is the more reliable technique to evaluate investments in

software assets. ROI and Payback were used to reinforce the investment

decision as a “second level “of decision.

5.3.6.5. Simulation Analysis

The investment analysis was used to indicate if an investment in a product line

scenario is worthwhile from an economic point of view. In other words, the

model must indicate accurately if the investment has a certain level of risk.

According to the data gathered from investment analysis, we investigated the

correlation between the reuse potential of the product line and the indication of

investment presented by the model.

 To avoid the use of a unique scenario for this investigation, we execute

the same experiment for a set of random scenarios, using the Monte Carlo

simulation technique. The first step was to create a large number of input

parameters for SC1 and SC2. In the spreadsheet, it was defined twenty thousand

(20.000) variation of both scenarios, each of them with a different set of input

parameters. According to the studies performed by Böckle et al. (Böckle et. al.,

2004), Clements et al. (Clements et al., 2004) and Muthig et al. (Muthig et al.,

2006), a reasonable homogeneity degree of a product line has the Fcommonality

factor in average of 70%. The data gathered from the commonality analysis

18 The Payback technique used here is not considering an amortization schedule through a discount rate.
This approach is known as “Discounted Payback”

Chapter 5 – Case Study

117

indicated a value of 75,59% for the homogeneity degree of the product line in

this case study. In addition, we found a standard deviation of 12,43% for this

metric. After the execution of the twenty-thousand scenarios, the correlation

between the homogeneity degree and the model probability to generate positive

values of NPV for SC1 is 0,993 and 0,995 for SC2. For SC1, the probability of

generating a NPV value greater than zero is 90,4% and for SC2 the probability

is 82,3%, as presented in Figure 5.7. We can assume these probability values

can indicate that there is a low risk in invest in that product line. This implies in

reject the null hypothesis ''
0H : µr > 0.9 and the investment is not indicated and

confirms the alternative hypothesis 2H : µr > 0.9 and the investment is

indicated.

Figure 5.7 – Simulation Results (NPV Probability for SC1 and SC2)

Chapter 5 – Case Study

118

Conclusion: The model can indicate accurately if an investment in a

product line is valuable. This fact was proved by the correlation between the risk

to invest in a product line and its reuse potential, measured by the homogeneity

degree metric (Clements et. al., 2005). The risk of NPV to be negative is less

than 10% for SC1 which indicates that the product line may have a positive

ROI for the most situations of the scenario. SC2 presented more risk involved

with product line adoption, and as result, a positive ROI for this scenario could

not be achieved with a probability of 18%.

5.3.6.6. Qualitative Analysis

After concluding the quantitative analysis for the case study, the qualitative

analysis was performed. This activity focused in analyzing the quality of the

material used in the experiment. Here, the most of the difficulties lies on the use

of the spreadsheet to perform the estimations. Because of the large number of

reuse scenarios generated in a random way, it took more than three minutes to

perform an entire simulation round. Each change performed in the spreadsheet

implied on a full calculation of the random scenarios. This fact contributed for

making the study a low productive experience.

 This low level of productivity can be explained by the use of a spreadsheet

with no refinements to support the simulation activities. It was studied the use

of commercial packages in order to perform the Monte Carlo simulation

experiment, but due to the lack of a formal budget associated with this case

study it was not possible to acquire such software licenses.

5.4. Lessons Learned
After concluding the case study, there are some points that should be considered

in order to repeat the experiment in a general way. The points that should be

improved are:

• Reuse Effort Data. One crucial aspect of InCoME is its application by

an organization that has a systematic reuse process in use by its

development team or has the intention to adopt product line engineering

approach. It is important that the historical data concerning the reuse

effort might be easily gathered, providing more confidence and accuracy

to the estimations. The organization where the study was performed does

Chapter 5 – Case Study

119

not have a formal reuse process in use and some cost factors for reuse

were estimated using market and other research benchmarks.

• Management Feedback. The final results of the study were presented

to the managers as forecast of a product line adoption by the

organization. For the next experiments, the relevance of the economic

analysis should be evaluated through the application of a questionnaire

fulfilled by the managers.

• Pilot Project. To reduce the time to start the experiment it is

fundamental the application of the model in a pilot project. In this sense,

it is recommended that an organization must have to define a set of

random product line scenarios in order to calibrate the spreadsheet used

in the experiment. A suggestion of such scenarios is given by Böckle et al.

(Böckle et al, 2004) e it was followed by Muthig et al. (Muthig et al.,

2006).

5.5. Chapter Summary
This chapter presented a case study using InCoME within an organization that

has been evaluating the economic aspects in adopting a product line approach

to develop a family of products. It was covered the context of the study, the

techniques used in the evaluation, the definition of the study, a formal planning,

the description of the project, the experiment instrumentation, the operation,

the analysis and interpretation and the lessons learned in the experiment. The

study analyzed the possibility of the subjects in using InCoME to evaluate a real

reuse scenario for an economic point of view. It approaches the model accuracy

and the correct indication for a viable investment in a product line.

 The analysis has shown that InCoME can be accurately calibrated if the

input parameters provided for it have as a source the organization historical

data. It also indicated that the homogeneity degree implies in a certain level of

reuse potential, which can indicate the viability of an investment.

 Finally, the study identified some improvements and directions for future

experiments, concerning the measurement of reuse effort and management

feedback.

 The next chapter will present the conclusions of this work, its main

contributions and directions for future works.

Conclusions

Product line engineering appears to be a solid and consistent approach to start a

reuse program within an organization. In this sense, the use of a cost model to

evaluate whether or not to invest in that approach can be considered a key

aspect to improve the level of confidence in decision-making tasks. As discussed

in Chapter 2 and 3, there are a large number of models available for use by

software development community. According to the survey presented in those

chapters, to be effective a cost model for software product line has to focuses in

both cost estimation and investment analysis. In addition, such models must be

the most flexible as possible in order to allow the definition of dynamic reuse

scenarios that can occur within an organization. However, the models studied in

this work lack in providing the flexibility to define new scenarios and an

integrated viewpoint of costs, benefits and investment analysis from the point of

view of different stakeholders.

 In this sense, in order to solve the issues related with the available cost

models for product lines, this dissertation proposed the Integrated Cost

Model for Product Line Engineering (InCoME), which defines a set of

cost and benefits functions, a set of reuse scenarios and a set of economic

functions to perform investment analysis for different viewpoints. The

foundations of the model are based on an extensive survey of existing cost

models, their failures and good practices.

6.1. Research Contributions
The main contributions of this work can be summarized in the following

aspects:

6

Chapter 6 – Conclusions

121

• The Key Developments in the Field of Reuse Cost Models. This

aspect focused in investigating the origins of cost models for software

reuse, including its definition, main features, classifications and state-of-

the-art. In addition, a comparison of nineteen models found in the

literature was made, presenting its most relevant features.

• A Survey on Software Product Line Cost Models. After the reuse

cost model definition, this dissertation focused in investigating the most

important cost models for software product line engineering, presenting

its main features and a discussion of the most important aspects that can

be considered in the definition of an effective model. The weakness and

strengths of nine cost models were studied in order to establish a basis to

solve the issues found.

• The Integrated Cost Model for Product Line Engineering

(InCoME). Next, with the issues of the models identified, we defined the

InCoME, which is a model to integrate the various elements that can be

considered relevant to evaluate investments in a product line. Its

foundations are based on the fundamentals of two different but

complementary models, coming up with a new approach to evaluate the

economic aspects of a product line. In addition a discussion on how to

apply the model into an organization was presented.

• The Case Study. In order to evaluate the accuracy of the model, a case

study was performed for a real reuse scenario. The study comes up with

two new metrics to evaluate the accuracy and the relevancy of the

estimations generated by the model. In its operation, the study analyzed

the model as quantitatively as well as qualitatively, and it indicates that

the model can be accurately calibrated to produce sounds estimations. At

the end, some improvements and directions were presented for future

experiments.

 We can highlight the main contribution of this work as the definition of an

integrated model to evaluate the economics aspects of a product line, with the

description of a set of mathematical functions to estimate cost and benefits, and

the results propagation to different viewpoints of an organization. Finally, we

Chapter 6 – Conclusions

122

highlight the approach to deal with investment analysis for product line

engineering.

6.2. Related Work
In the literature, some related work could be identified during this research. In

Chapter 3 nine models were presented, a few of them with some level of

similarity with this work. We can state that the key difference of this work and

the others is the definition of a model that integrates the most significant

aspects relative to an effective cost model for product line engineering. These

aspects are related to the integration among cost estimation (Mili et al., 2001),

investment analysis (Favaro et al., 1998) and reuse scenarios (Clements et al.,

2005). Another point to help distinguishing between InCoME and the other

models is a new way to analyze the worthiness of an investment in a product

line by the use of simulation (Muthig et al., 2006).

6.3. Future Work
According to the contributions obtained during this dissertation, some

directions for future work can be proposed, as an extension of the study

performed for InCoME definition. The directions are:

• InCoME Validation. According to Böckle et al. (Böckle et al., 2004),

constructing economic models is one thing, but building practical ones

is another. In this sense, new studies in different reuse scenarios should

be performed in order to calibrate the model and improve its level of

confidence. The initial evaluation of InCoME was performed in an

organization that has no systematic reuse program and additional

product line scenarios cannot be tested as well. A possible direction is to

repeat the experiment in a set of organizations that have one or more

product lines and investigate the real benefits achieved by product line

adoption, establishing new benchmarks for reuse community.

• Product Line Approach. Modeling the evolutionary cycles for product

lines implies in the interpretation of the cost incurred during a period of

interest. The need to account for time periods is true for all cost functions

(Clements et al., 2005). This aspect is relevant when comparing reactive

product line development with proactive approach. In this context, one

line of investigation could be established in order to compare the reuse

Chapter 6 – Conclusions

123

scenarios associated with both approach and the investment analysis of

its viewpoints. This study can suggest the most suitable approach

(reactive or proactive) for an organization from an economic point of

view.

• Dependency and Sensitivity Analysis. Defining a cost model in

terms of its input parameters it is not a trivial task due to the

dependencies that can exist among them. Uncovering and quantifying

these dependencies is a key factor to help the evaluation of model

accuracy (Peterson, 2004). Moreover, it may exists a particular scenario

that is more sensitive to input changes than others and the identification

of the set of variables that apply in this case can help an organization in

calibrating the model. A possible direction here is to perform a sensitivity

analysis for a large set of results provided by the model and investigates

its correlation19.

• Decision Model. According to the survey performed on Chapter 3, one

relevant aspect to define an effective cost model for software product line

is the use of a decision model (Schmid, 2003). Even with its relevancy

recognized by the models studied, only one of them has this aspect

formally defined. Applying a decision model allows an organization to

address the risks associated with an investment in a product line. The

direction here relies in investigating the potential options for reuse

scenarios using decision analysis techniques, such as decision trees

(Harrison et al., 2002). Decision trees can be used in this case to

evaluate the future benefits to take uncertainty into account. Schmid

(Schmid, 2003) was already investigated the use of decision trees to find

out the influence of a certain strategy in determine the appropriated path

of action for product lines investment.

• Tool Implementation. The application of a reuse cost model in an

organization may be a difficult task if no automated support is provided

(Krueger, 2007). Some directions in this sense have been approaching

requirements definition and tool implementation to support the model

19 Clements et. al. (Clements, 2005) suggests that this investigation can be performed through the “What-
If” technique.

Chapter 6 – Conclusions

124

estimations (Mili et al, 200120), (Clements et al., 200521), (Lamine et al.,

2005). In the case study a spreadsheet was used to calculate the cost and

benefits factors. This tool was particularly important to automate the

investment analysis activity, but it lacks on retrieving the historical data

from the organization internal systems in an integrated way. A possible

direction can explore the development of an integrated tool that acquires

effort information from historical data and provide more usability to the

users of the model. Clements et al. (Clements et al., 2005) suggest a list of

features for a potential tool, including the display of graphs for each

reuse scenario, the possibility to execute simulation over the input

parameters, the possibility to accept a list of assumptions inherent to

model (or to the scenarios, or yet, to the input parameters), and, the

possibility to allow users to propose new scenarios and formulations that

reflects those scenarios.

6.4. Academic Contributions
The knowledge acquired during this dissertation can be shared with the product

line research community through the following publication:

• (Nóbrega et al., 2006) Nóbrega, J.; Almeida, E. S.; Meira, S. R. L., “A

Cost Framework Specification for Software Product Lines

Scenarios”, in the Sixth Workshop on Component-Based Development

(WDBC), Recife, Brazil, 2006.

Besides the published paper, there are two additional papers in evaluation

during the period when this dissertation was written:

• (Nóbrega et al., 2008a) Nóbrega, J.; Almeida E. S.; Meira, S. R. L., “An

Integrated Cost Model for Product Line Engineering”, in 34th

Euromicro Conference on Software Engineering and Advanced

Application, Parma, Italy, September 3-5, 2008 (in evaluation).

• (Nóbrega et al., 2008b) Nóbrega, J.; Almeida E. S.; Meira, S. R. L., “An

Industrial Case Study with an Integrated Cost Model for

Software Product Lines”, in Simpósio Brasileiro de Componentes,

20 http://www.csee.wvu.edu/reuseroi
21 http://simple.sei.cmu.edu/

Chapter 6 – Conclusions

125

Arquitetura e Reutilização de Software 2008 (SBCARS 2008) (in

evaluation).

6.5. Concluding Remarks
Product line engineering is not a new concept, since Eli Whitney

revolutionized the manufacturing of rifles using interchangeable

parts and Henry Ford did the same for automobiles, integrating this idea with

an assembly line. For software development community, the product line

engineering is emerging as a practical and important paradigm to solve the

problems related with cost and schedule overruns. One key aspect to successful

this approach is to identify costs and benefits that are associated with product

family development.

 In this sense, this work presented the Integrated Cost Model for Product

Line Engineering (InCoME), which was based on an extensive review of

available cost models by addressing their main features, weakness and

strengths.

This model aims to perform an investment analysis to a product line

through the estimation of costs and benefits associated with it. In addition, the

model was evaluated in a real software development scenario, where the

findings had indicated that it can generates cost estimations in an accurately

way.

References

(Albrecht, 1979) Albrecht, A. J. Measuring Application Development

Productivity, IBM Applications Development Symposium,

Monterey, CA, 1979.

(Almeida et al., 2004) Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C.,

Meira, S.R.L. RiSE Project: Towards a Robust Framework

for Software Reuse, IEEE International Conference on

Information Reuse and Integration (IRI), 2004, Las Vegas, USA,

p. 48-53.

(Almeida, 2007) Almeida, E.S. The RiSE Process for Domain

Engineering, Ph.D. Thesis, Federal University of Pernambuco,

Recife, March, 2007.

(Alvaro et al., 2006) Alvaro, A., Almeida, E.S., Meira, S. R. L. A Software

Component Quality Model: A Preliminary Evaluation,

32nd IEEE EUROMICRO Conference on Software Engineering

and Advanced Applications (SEAA), Component-Based Software

Engineering Track, Cavtat/Dubrovnik, Croatia, p. 28-35.

(Bandinelli et al., 1996) Bandinelli, S., Sagarduy, G., A Unifying Framework

for Reuse Economic Models, Technical Report ESI-1996-

REUSE03, European Software Institute, Bilbao, Spain,

November, 1996.

(Barnes et al., 1991) Barnes, B., Bollinger, T. Making Software Reuse Cost

Effective. IEEE Software (1 1991), pp. 13-24.

 References

127

(Barros, 2001) Barros, M.O. Project Management based on Scenarios: A

Dynamic Modeling and Simulation Approach (in

Portuguese), Ph.D. Thesis, Federal University of Rio de Janeiro,

December, 2001, pp. 249.

(Basili et al., 1994) Basili, V.R., Caldiera, G., Rombach, H.D. The Goal

Question Metric Approach, Encyclopedia of Software

Engineering, Vol. II, September, 1994, pp. 528-532.

(Bayer et al., 1999) J. Bayer, Flege, O., Knauber, P., Laqua, R., Muthig, D.,

Schmid, K., Widen, T., DeBaud, J. PuLSE: A Methodology to

Develop Software Product Lines, Proc. 5th Symp. Software

Reusability (SSR’99), ACM Press, New York, 1999, pp.122–131.

(Böckle et al., 2004) Böckle, G., Clements, P., McGregor, J.D., Muthig, D.,

Schmid, K. Calculating ROI for Software Product Lines,

IEEE Software, Vol. 21, No. 03, May/June, 2004, pp. 23-31.

(Boehm, 1981) Boehm, B.W. Software Engineering Economics, Prentice-

Hall, Englewood Cliffs, NJ.

(Boehm et al., 1995) Boehm, B.W., Clark, B., Horowitz, E., Westland, C.,

Madachy, R. Selby, R. Cost Models for Future Software

Lifecycle Processes: COCOMO 2.0, Annals of Software

Engineering 1, 57–94.

(Boehm et al., 2003) Boehm, B., Huang, L.G. Value-based Software

Engineering: a Case Study, IEEE Computer, Vol. 36, No. 03,

March, 2003, pp. 33-41.

(Boehm et al., 2004) Boehm, B., Winsor, B.A, Ray, M., Yang, Y. A Software

Product Line Life Cycle Cost Estimation Model, 156-164.

Proceedings of the 2004 International Symposium on Empirical

Software Engineering. Redondo Beach, CA, August 19-20, 2004.

Los Alamitos, CA: IEEE Computer Society, 2004.

(Boehm, 2006) Boehm, B., Hoh, P., Baik, J., Kim, S., Yang, Y. A Quality-

based Cost Estimation Model for the Product Line Life

 References

128

Cycle, Communications of the ACM, December 2006/Vol. 49,

No. 12.

(Bollinger et al., 1990) Bollinger, T.B., Pfleeger, S.L. Economics of Reuse:

Issues and Alternatives, Information and Software

Technology, Volume 32, Issue 10 (December 1990) Pages: 643 –

652.

(Brealey et al., 1996) Brealey, R., Myers, S. Principles of Corporate

Finance, 5th Edn., McGraw-Hill, New York, NY.

(Brito et al., 2007) Brito, K.S., Garcia, V.C., Lucrédio, D.A., Almeida, E. S.,

Meira, S.R.L. LIFT: Reusing Knowledge from Legacy

Systems, Brazilian Symposium on Software Components,

Architectures and Reuse, Campinas, Brazil, 2007.

(Brooks, 1995) Brooks, F.P. The Mythical Man-Month: Essays on

Software Engineering, 20th Anniversary Edition,

Addison-Wesley Professional, 1st edition (August 2, 1995).

(Brownsword et al., 1996) Brownsword, L., Clements, P. A Case Study in

Successful Product Line Development, Tech. Report

CMU/SEI-96-TR-016, Software Eng. Inst., Carnegie Mellon

Univ., Pittsburgh, 1996.

(Burégio, 2006) Burégio, V.A.A. Specification, Design, and

Implementation of a Reuse Repository, Msc. Dissertation,

Federal University of Pernambuco, Recife, August, 2006.

(Caldiera et al., 1991) Caldiera, G., Basili, V. Identifying and Qualifying

Reusable Software Components, IEEE Computer 24, 2, pp

61–70.

(Chulani, et al. 1999) Chulani, S., Boehm, B., Steece, B. Bayesian Analysis of

Empirical Software Engineering Cost Models, IEEE

Transactions on Software Engineering 25, 4 (1999), 573–583.

(Clements et al., 2001) Clements, P., Northrop, L.M. Software Product

Lines, Addison-Wesley, 2001.

 References

129

(Clements et al., 2002) Clements, P., Krueger, C. Initiating Software

Product Lines - Point/Counterpoint: Being Proactive

Pays Off, IEEE Software 19, 4 (July/August 2002).

(Clements, 2002) Clements, P. Being Proactive Pays Off, IEEE Software,

July/August 2002, pp 28-30.

(Clements et al., 2004) Clements, P., Northrop, L. A Framework for

Software Product Line Practice, Version 4.2. Consulted in

November 2007 in

http://www.sei.cmu.edu/productlines/framework.html (2004).

(Clements et al., 2005) Clements, P.C., McGregor, J.D., Cohen, S.G. The

Structured Intuitive Model for Product Line Economics

(SIMPLE), Technical Report, CMU/SEI-2005-TR-003, ESC-

TR-2005-003.

(COCOTS, 1999) COCOTS Technical Report, Center for Software

Engineering, University of Southern California, Los Angeles, CA.

(Cohen, 2003), Cohen, S. Technical Note CMU/SEI-2003-TN-017, 2003.

(Coriat, 2000) Coriat, M. The SPLIT Method, Proc. 1st Software Product

Line Conf, 2000.

(Coulange, 1998) Coulange, B. Software Reuse, Springer, London, UK, 1998.

(Devanbu et al., 1996) Devanbu, P., Karstu, S., Melo, W., Thomas, W.

Analytical and Empirical Evaluation of Software Reuse

Metrics, In Proceedings of International Conference on

Software Engineering, Berlin, Germany, IEEE Press, New York.

(Erdogmus et al., 2004) Erdogmus, H., Favaro, J. M., Strigel, W.

Introduction: Return on Investment, IEEE Software, Vol.

21, No. 03, May/June, 2004, pp. 18-22.

(Ezran et al., 2002) Ezran, M., Morisio, M., Tully, C. Practical Software

Reuse, Springer, 2002, pp. 374.

(Fafchamps, 1994) Fafchamps, D. Organizational Factors and Software

Reuse, IEEE Software 11, 5, 31–41.

 References

130

(Favaro, 1996) Favaro, J. A Comparison of Approaches to Reuse

Investment Analysis, The Fourth International Conference on

Software Reuse, IEEE Computer Society Press, Orlando, USA,

April, 1996, pp. 136-145.

(Favaro et al., 1998) Favaro, J., Favaro, K., Favaro, P.F. Value Based

Software Reuse Investment, Annals of Software Engineering

5, 5–52.

(Feynman, 1985) Feynman, R., Surely You’re Joking Mr. Feynman!,

Bantam, 1985.

(Frakes et al., 1994a) Frakes, W.B., Terry, C. Reuse Level Metrics, In

Proceedings of the 3rd International Conference on Software

Reuse, Rio de Janeiro, Brazil, November, pp. 139–148.

(Frakes et al., 1994b) Frakes, W.B., Isoda, S. Success Factors of Systematic

Software Reuse, IEEE Software, Vol. 12, No. 01,September,

1994, pp. 15-19.

(Frakes et al., 1996) Frakes, W.B., Terry, C. Software reuse: Metrics and

Models, ACM Computing Surveys, Vol. 28, No. 02, ACM Press,

Jun, 1996, pp. 415-435.

(Gaffney et al., 1992) Gaffney, J.E., Cruickschank, R.D. A General

Economics Model of Software Reuse, In Proceedings of the

International Conference on Software Engineering, Melbourne,

Australia, May, pp. 327–337.

(Garcia et al., 2007) Garcia, V.C., Lucrédio, D., Durão, F.A., Santos, E.C.R.,

Almeida, E.S., Fortes, R.P.M., Meira, S.R.L. From

Specification to the Experimentation: A Software

Component Search Engine Architecture, 9th International

Symposium on Component-Based Software Engineering (CBSE),

Sweden, Lecture Notes in Computer Science (LNCS), Springer-

Verlag, p. 82-97.

(Gibbs, 1994) Gibbs, W.W. Software's Chronic Crisis, Scientific American

271 (3), 86-95, 1994.

 References

131

(Guerrieri et al., 1988) Guerrieri, E., Lori A.L., Theodore, B.R. An Acquisition

Strategy for Populating a Software Reuse Library,

National Conference on Software Reusability, Washington D.C.,

July 19-20, 1989.

(Harrison et al., 2002) Harrison, W., Erdogmus, H., Sullivan, K., Boehm, B.,

Reifer, D., Software Engineering Economics:

Background, Current Practices and Future Directions,

Tutorial 3 at the International Conference on Software

Engineering, 2002.

(Hartmann et al., 2006) Hartmann, S., Frigg, R. Models in Science, In The

Stanford Encyclopedia of Philosophy. 02/2006. Edited by Zalta,

E. N. Stanford University, 2006.

(Kain, 1994) Kain, B.J. Measuring the ROI of Reuse, Object Magazine 4, 3,

pp. 48–54.

(Karner, 1993) Karner, G. Metrics for Objectory, Diploma thesis, University

of Linköping, Sweden, No. LiTHIDA-Ex-9344:21. December

1993.

(Kazman et al., 2002) Kazman, R., Asundi, J., Klein, M. Making

Architecture Design Decisions: An Economic Approach,

(CMU/SEI-2002-TR-035, ADA408740). Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University,

2002.

(Krueger, 1992) Krueger, C.W. Software Reuse, ACM Computing Surveys,

Vol. 24, No. 02, June, 1992, pp. 131-183.

(Krueger, 2007) Krueger, C.W. The New Generation of Software Reuse

Tools for Software Product Line Lifecycle Engineering

and Management, RISS 2007, 1st RiSE Summer School on

Software Reuse, Recife, Brazil, 2007.

(Lamine et al., 2005) Lamine, S., Jilani, L., Ghezala H. A Software Cost

Estimation Model for Product Line Engineering:

SoCoEMo-PLE, Proceedings, The 2005 International

 References

132

MultiConference in Computer Science and Computer

Engineering, Software Engineering Research and Practice

conference SERP 2005. Las Vegas Nevada USA (2005).

(Learch, 1997) Leach, R.J. Software Reuse, McGraw Hill, New York, 1997.

(Leung et al., 2001) Leung, H., Fan, Z. Software Cost Estimation,

Handbook of Software Engineering and Knowledge Engineering,

Vol. II, 2001, pp. 14.

(Lim, 1994) Lim, W.C. Effects of Reuse on Quality, Productivity and

Economics, IEEE Software 11, 5, 23–30.

(Lim, 1996) Lim, W.C. Reuse Economics: A Comparison of Seventeen

Models and Directions for Future Research, The 4th

International Conference on Software Reuse, Orlando, USA,

April, 1996, pp. 41-51.

(Lim, 1998) Lim, W.C. Managing Software Reuse: A Comprehensive

Guide to Strategically Reengineering the Organization

for Reusable Components. Prentice-Hall, Upper Saddle

River, NJ, 1998.

(Lisboa et al., 2007) Lisboa, L.B., Garcia, V.C., Almeida, E.S., Meira, S.L.

ToolDAy: A Process-Centered Domain Analysis Tool,

21st Brazilian Symposium on Software Engineering, Tools

Session, João Pessoa,Brazil, 2007.

(Malan et al., 1993) Malan, R., Wentzel, K. Economics of Reuse, Revisited,

Technical Report HPL-93-31, Hewlett Packard Laboratories.

(Malvin et al., 1986) Malvin, K., Whitlock, PA. Monte Carlo Methods, New

York: John Wiley & Sons, 1986.

(Manhattan, 2004) History – Los Alamos – Oversight Committee Formed The

Manhattan Project Heritage Preservation Association,

http://www.childrenofthemanhattanproject.org/HISTORY/H-

06c12.htm, 2004. URL acessed in 10/12/2007.

(Margano et al., 1992) Margano, J., Rhoads, T.E. Software Reuse

Economics: Cost Benefit Analysis on a Large Scale Ada

 References

133

Project, In Proceedings of International Conference on Software

Engineering, Melbourne, Australia, May, 1992, pp. 338–348.

(Mascena, 2006) Mascena, J. ADMIRE: Asset Development Metric-

based Integrated Reuse Environment, M.Sc. Dissertation,

Federal University of Pernambuco, Recife, May, 2006.

(McGregor et al., 2002) McGregor, J., Northrop, L., Jarrad, S., Pohl, K.

Initiating Software Product Lines, IEEE Software, July-

August 2002, pp. 24-27.

(McIlroy, 1968) McIlroy, M.D. Mass Produced Software Components,

NATO Software Engineering Conference Report, Garmisch,

Germany, October, 1968, pp. 79-85.

(Mili, 1996) Mili, R. Return on Investment of Reusable Components:

Analytical and Empirical Approaches, Technical Report,

University of Ottawa, Ottawa, ON, Canada, 1996.

(Mili et al., 1999) Mili, A., Fowler, S., Gottumukkala, R., Zhang, L. Software

Reuse Cost Estimation, Technical Report, CSEE Department,

West Virginia University.

(Mili et al., 2000) Mili, A., Chmiel, S. F., Gottumukkala, R., Zhang, L. An

Integrated Cost Model for Software Reuse, The 22nd

International Conference on Software Engineering, Limerick,

Ireland, ACM Press, June, 2000, pp. 157-166.

(Mili et al., 2001) Mili, A., Chmiel, S.F., Gottumukkala, R., Zhang, L.

Managing Software Reuse Economics: An Integrated

ROI-based Model, Annals of Software Engineering 11, 175–

218, 2001.

(Mili et al., 2002) Mili, H., Mili, A., Yacoub, S., Addy, E. Reuse-Based

Software Engineering, Willey, 2002, pp. 636.

(Morizio et al., 2002) Morisio, M., Ezran, M., Tully, C. Success and Failure

Factors in Software Reuse, IEEE Transactions on Software

Engineering, Vol. 28, No. 04, April, 2002, pp. 340-357.

 References

134

(Muthig et al., 2006) Muthig, D., Ganesan, D., Yoshimura, K., Predicting

Return-on-Investment for Product Line Generations,

10th International Software Product Line Conference (SPLC'06).

(Naur et al., 1969) Naur, P., Randell, B. Software Engineering: Report of a

Conference Sponsored by the NATO Science Committee,

Garmisch, Germany, 7-11 October 1968, Brussels, Scientific

Affairs Division, NATO. (Eds.). 1969.

(Nazareth et al., 2004) Nazareth, D.L., Rothenberger, M.A. Assessing the

Cost-Effectiveness of Software Reuse: a Model for

Planned Reuse, Journal of Systems and Software, Vol. 73, No.

02, October, 2004, pp. 245-255.

(Nóbrega et al., 2006) Nóbrega, J.P. Almeida, E.S., Meira. S.R.L. A Cost

Framework Specification for Software Product Lines Scenarios,

WDBC 2006, Recife, pp. 30-37.

(Nóbrega et al., 2008a) Nóbrega, J.; Almeida E. S.; Meira, S. R. L., An

Integrated Cost Model for Product Line Engineering, in

34th Euromicro Conference on Software Engineering and

Advanced Application, Parma, Italy, September 3-5, 2008 (in

evaluation).

(Nóbrega et al., 2008b) Nóbrega, J.; Almeida E. S.; Meira, S. R. L., An

Industrial Case Study with an Integrated Cost Model for

Software Product Lines, in Simpósio Brasileiro de

Componentes, Arquitetura e Reutilização de Software 2008

(SBCARS 2008) (in evaluation).

(Northrop, 2002) Northrop, L.M., SEI's Software Product Line Tenets,

IEEE Software, July/August 2002, pp. 32-40.

(Peterson, 2004) Peterson, D.R. Economics of software Product Lines,

Lecture Notes in Computer Science, Springer Berlin / Heidelberg

Volume 3014, pp. 381-402, 2004.

(Philips, 2000) Philips America CoPAM: A Component-Oriented

Platform Architecting Method Family for Product

 References

135

Family Engineering, Proc. 1st Software Product Line Conf,

2000.

(Pllana, 2000) Pllana, S. History of Monte Carlo Method,

http://www.geocities.com/CollegePark/Quad/2435/index.html,

August 2000. URL acessed in 10/12/2007.

(Poulin et al., 1993) Poulin, J.S., Caruso, J.M., Handcock, D.R. The Business

Case for Software Reuse. IBM Syst. J. 32, 4, 567–594.

(Poulin, 1997a) Poulin, J.S. Measuring Software Reuse: Principles,

Practices, and Economic Models, ISBN 0-201-63413-9,

Addison-Wesley, Reading, MA.

(Poulin, 1997b) Poulin, J.S. The Economics of Product Line

Development, Available in URL:

http://home.stny.rr.com/jeffreypoulin/Papers/IJAST97/ijast97.

html, Consulted in October, 2007.

(Poulin, 2006) Poulin, J.S. The Business Case for Software Reuse:

Reuse Metrics, Economic Models, Organizational

Issues, and Case Studies, Tutorial Notes, Torino, Italy, June,

2006.

(Pressman, 2004) Pressman, R.L., Software Engineering: A

Practitioner's Approach, McGraw-Hill, ISBN 007301933X /

9780073019338, 2004.

(Rothenberger et al., 2004) Rothenberger, M.A., Nazareth, D.L. A Cost-

Benefit Model for Systematic Software Reuse, ECIS 2002,

June 6–8, Gdańsk, Poland.

(Sametinger, 1997) Sametinger, J., Software Engineering with Reusable

Components, Springer- Verlag, 1997, pp.275.

(Schmid, 2002) Schmid, K. Reuse Economics from a Product Line Point

of View, Seventh International Conference on Software Reuse,

International Workshop on Reuse Economics, 2002.

 References

136

(Schmid, 2003) Schmid, K., Integrated Cost and Investment Models for

Product Family Development, Kaiserslautern, 2003, VIII, 80

pp. : Ill., Lit.IESE-Report, 067.03/E.

(Schimsky, 1992) Schimsky, D. Software Reuse – Some Realities, Vitro

Tech. Journal 10, 1, 47–57.

(Sharp, 2000) Sharp, D. Component-Based Product Line Development

of Avionics Software, Proc. 1st Software Product Line Conf.,

pp. 353–369.

(SPLC1, 2000) Kluwer Academic Publishers, Boston, 2000, pp. 147–166.

(Thiel et al., 2000) Thiel, S., Peruzzi, F. Starting a Product Line Approach

for an Envisioned Market, Proc. 1st Software Product Line

Conf., 2000.

(Toft, 2000) Toft, P. A Cooperative Model for Cross-Divisional Product

Development for a Software Product Line, Proc. 1st

Software Product Line Conf, 2000.

(Tomer et al., 2004) Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., Schach, S.R.

Evaluating Software Reuse Alternatives: A Model and

Its Application to an Industrial Case Study, IEEE

Transactions on Software, Vol. 30, No. 9, September 2004.

(Trigeorgis, 1996) Trigeorgis, L. Real Options, The MIT Press, Cambridge,

MA, 1996.

(Trivedi, 2001) Trivedi, K.S. Probability and Statistics with

Reliability,Queuing, and Computer Science

Applications, John Wiley and Sons, New York, 2001. ISBN

number 0-471-33341-7.

(Vanderlei et al., 2006) Vanderlei, T.A., Durão, F.A., Martins, A.C., Garcia, V.C.,

Almeida, E.S., Meira, S.R.L. A Classification Mechanism for

Search and Retrieval Software Components, 22nd Annual

ACM Symposium on Applied Computing (SAC), Information

Retrieval Track, Seul, Korea.

 References

137

(Verhoef, 2005) Verhoef, C. Quantifying the Value of IT Investments,

Science of Computer Programming 56 (2005), pp. 315–342.

(Wiles et al., 1998) Wiles, E., Bott, F. Eight Steps to Your Own Economic

Model of Software Reuse. In Proceedings of the European

Reuse Workshop 98 (Madrid, Spain, Nov. 1998), pp. 123-127

(Wiles, 1999) Wiles, E. Economics Models of Software Reuse: A Survey,

Comparison and Partial Validation, Technical Report,

version 2.1, April, 1999, pp. 49.

(Wohlin et al., 2000) Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C.,

Regnell, B., Wesslén, A. Experimentation in Software

Engineering: An Introduction, Kluwer Academic Publishers,

2000, pp. 204.

Appendix A. Monte Carlo
Simulation

The Monte Carlo Simulation method provides approximate solutions to a

variety of mathematical problems by performing statistical sampling

experiments on a computer (Malvin et al., 1986). The method applies to

problems with absolutely no probabilistic content as well as to those with

inherent probabilistic structure.

 This method is largely used for iteratively evaluating a deterministic

model using sets of random numbers as inputs. It is often used when the model

is complex, nonlinear, or involves more than just a couple uncertain parameters.

It also can be described as a method to analyze the uncertainty

propagation, where the goal is to determine how random variation, lack of

knowledge or error affects the sensitivity, performance or reliability of the

system that is being modeled. Monte Carlo simulation is categorized as a

sampling method because its inputs are randomly generated from probability

distributions to simulate the process of sampling from an actual population. To

perform simulation using this method is necessary to choose a distribution for

the inputs that most closely matches data we already have, or best represents

our current state of knowledge. The data generated from the simulation can be

represented as probability distributions, i.e. histograms, or converted to errors

bars, reliability predictions, tolerance zones, and confidence intervals.

 Among the frequently used distribution in Monte Carlo simulation, we

can highlight the following:

• Normal/Gaussian Distribution. Continuous distribution applied in

situations where the mean and the standard deviation are given and the

 Appendix A – Monte Carlo Simulation

139

mean represents the most probable value of the uncertain variable. It is

symmetrical around the mean and is not bounded.

• Lognormal Distribution. Continuous distribution specified by mean

and standard deviation. This is appropriate for a variable ranging from

zero to infinity, with positive skewness and with normally distributed

natural algorithm.

• Triangular Distribution. Continuous distribution with fixed

minimum and maximum values. It is bounded by the minimum and

maximum values and can be either symmetrical (the most probable value

is equals to the mean and to the median) or asymmetrical.

• Uniform Distribution. Continuous distribution bounded by known

minimum and maximum values. In opposition to the triangular

distribution, the likelihood of the occurrence of the values between the

minimum and maximum is the same.

• Exponential Distribution. Continuous distribution used to illustrate

the time between independent occurrences when the rate of them is

known.

Consider that we have a real-valued function g(X) with probability

frequency function P(x), if x is discrete, or probability density function f(x), if x

is continuous. Then we can define the expected value of g(X) in discrete and

continuous terms, as the following:

()() () ()∑
+∞

∞−

= XPxgXgE , where () 0>xP and ()∑
+∞

∞−

= 1xP

()() () ()∫
+∞

∞−
= dxxfxgXgE , where () 0>xf and ()∫

+∞

∞−
= 1dxxf

Next, we make n random drawings of X (x1, ..., xn), called trial runs or

simulation runs, calculate g(x1), …, g(xn) and find the mean of g(x) of the

sample:

()xgn ()∑
=

=
n

i
ixg

n 1

1
, which represents the final simulated value of E(g(X)).

 Appendix A – Monte Carlo Simulation

140

As ,∞→n ()Xgn ()(),XgE→ thus we are now able to compute the

dispersion around the estimate mean with the unbiased variance of ()Xgn :

()() () () ()()
2

11
11 ∑

=

−
−

=
n

i
nin xgxg

nn
XgVar

In summary, to perform a simulation using the Monte Carlo method is

necessary to follow the five simple steps below:

Step1. Create a parametric model, y = f(x1, x2, …, xn).

Step2. Generate a set of random inputs,
niii xxx ,...,,

21
.

Step3. Evaluate the model and store the results as yi.

Step4. Repeat steps 2 and 3 for i=1 to n.

Step5. Analyze the results using histograms, summary statistics,

confidence intervals, and so on.

	An Integrated Cost Model for Product Line Engineering
	Acklowledgements
	Abstract
	Resumo
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	1.1. Motivation
	1.2. Problem Statement
	1.3. Overview of the Proposed Solution
	1.3.1. Context

	1.4. Out of Scope
	1.5. Statement of the Contributions
	1.6. Organization of the Dissertation

	2. Key Developments in the Field of Software Reuse Cost Models
	2.1. Introduction
	2.2. Motivation
	2.3. Definitions
	2.4. Basic Features
	2.4.1 Investment Cycles
	2.4.2 Cost Factors
	2.4.3 Economic Functions
	2.4.4 Viewpoints
	2.4.5 Reuse Organizations
	2.4.6 Assumptions

	2.5. Classifications
	2.6. State-of-the-Art
	2.7. Models Comparison
	2.8. Chapter Summary

	3. Software Product Line Cost Models: State-of-the-Art
	3.1. Introduction
	3.2. Software Product Lines
	3.2.1 Domain Engineering
	3.2.2 Product Development
	3.2.3 Management
	3.2.4 Product Line Engineering

	3.3. A Survey on Cost Models for Software Product Line
	3.3.1. Poulin’s Cost Model for Software Product Lines
	3.3.2. ABC Approach
	3.3.3. Schmid Model
	3.3.4. Convergys Experience
	3.3.5. Tomer Model
	3.3.6. Constructive Product Line Investment Model (COPLIMO)
	3.3.7. Structured Intuitive Model for Product Line Economics (SIMPLE)
	3.3.8. Software Cost Estimation Model for Product Line Engineering (SoCoEMo-PLE)
	3.3.9. Quality-based SPL Cost Estimation Model (qCOPLIMO)

	3.4. Towards an Effective Software Product Line Cost Model
	3.4.1. Costs and Benefits Functions
	3.4.2. Reuse Scenarios
	3.4.3. Investment Analysis
	3.4.4. Approaches for Implementation

	3.5. Summary of the Study
	3.6. Chapter Summary

	4. InCoME: Integrated Cost Model for Product Line Engineering
	4.1. Introduction
	4.2. Overview of the Model
	4.2.1. Objectives
	4.2.2. Model Assumptions

	4.3. The Foundations
	4.3.1 Integrated Cost Model for Software Reuse
	4.3.2 Structured Intuitive Model for Product Line Economics (SIMPLE)
	4.3.3 Monte Carlo Simulation

	4.4. Elements of the Model
	4.4.1. Cost Factors
	4.4.1.1. Demand Function
	4.4.1.2. Cost Functions

	4.4.2. Viewpoints
	4.4.2.1. Domain Engineering Viewpoint.
	4.4.2.2. Product Engineering Viewpoint.
	4.4.2.3. Corporate Engineering Viewpoint.

	4.4.3. Investment Analysis
	4.4.4. Simulation Model

	4.5. Using the Model
	4.5.1. Establishing an Organizational Scenario
	4.5.2. Functions Adjustments
	4.5.3. Model Revision
	4.5.4. Cost Factors Estimation
	4.5.5. Model Population
	4.5.6. Benefits Analysis
	4.5.7. Economic Analysis
	4.5.8. Product Line Investment Evaluation
	4.5.9. Cost Configuration Establishment

	4.6. Chapter Summary

	5. Case Study
	5.1. InCoME Context
	5.2. Evaluation Techniques
	5.3. InCoME Evaluation
	5.3.1. Definition
	5.3.1.1. Goal
	5.3.1.2. Questions
	5.3.1.3. Metrics

	5.3.2. Planning
	5.3.2.1. Context
	5.3.2.2. Subjects
	5.3.2.3. Training
	5.3.2.4. Pilot Project
	5.3.2.5. Instrumentation
	5.3.2.6. Criteria
	5.3.2.7. Null Hypothesis
	5.3.2.8. Alternative Hypothesis
	5.3.2.9. Independent Variables
	5.3.2.10. Dependent Variables
	5.3.2.11. Qualitative Analysis
	5.3.2.12. Internal Validity
	5.3.2.13. External Validity
	5.3.2.14. Construct Validity
	5.3.2.15. Conclusion Validity

	5.3.3. Project Description
	5.3.4. Instrumentation
	5.3.4.1. Selection of the Subjects
	5.3.4.2. Data Validation
	5.3.4.3. Instrumentation

	5.3.5. Operation
	5.3.5.1. Experimental Environment
	5.3.5.2. Training
	5.3.5.3. Costs

	5.3.6. Analysis and Interpretation
	5.3.6.1. Training Analysis
	5.3.6.2. Quantitative Analysis
	5.3.6.3. Viewpoint Analysis
	5.3.6.4. Investment Analysis
	5.3.6.5. Simulation Analysis
	5.3.6.6. Qualitative Analysis

	5.4. Lessons Learned
	5.5. Chapter Summary

	6. Conclusions
	6.1. Research Contributions
	6.2. Related Work
	6.3. Future Work
	6.4. Academic Contributions
	6.5. Concluding Remarks

	References
	Appendix A. Monte Carlo Simulation
	Ficha de Aprovação

